
CerberOS: A Resource-Secure OS for Sharing IoT Devices

Sven Akkermans, Wilfried Daniels, Gowri Sankar R., Bruno Crispo and Danny Hughes
imec-DistriNet, KU Leuven

3001 Leuven, Belgium
sven.akkermans@cs.kuleuven.be

Abstract
To continue to grow, the Internet of Things (IoT) requires

scalable and secure system software solutions for resource-
constrained devices. To maximize return on investment of
these devices, IoT platforms should support multiple third-
party applications and adaptation of software over time.
However, realizing the vision of shared IoT platforms de-
mands not only strong guarantees on the confidentiality and
integrity of application data, but also guarantees on the use of
critical resources such as computation, sensors and energy.
We refer to this vision as resource security. Prior research
on Operating Systems (OS) for tiny IoT devices has focused
on miniaturizing core functionality such as scheduling and
communication and does not consider resource security. To
address this problem, we introduce CerberOS, a resource-
secure OS for sharing IoT devices. CerberOS enables mul-
tiple applications on constrained IoT devices while, for the
first time, guaranteeing data confidentiality, integrity and se-
cure resource management. Our approach is based upon the
twin pillars of virtualization, which isolates applications, and
contracts, which control application resource usage. Evalu-
ation shows that CerberOS supports the secure coexistence
of up to seven applications on a representative IoT device
with a memory usage of 40KB ROM and 5KB RAM while
preserving multi-year battery lifetimes.

Categories and Subject Descriptors
I.6 [Operating Systems Security]: Virtualization and se-

curity

General Terms
DESIGN, SECURITY

Keywords
Multiple applications, virtualization, resource security,

Internet of Things, operating systems

1 Introduction
The Internet of Things (IoT) is growing rapidly with

large-scale networks of constrained devices being deployed
in our homes and across all sectors of industry. Despite ad-
vances in hardware and software technologies, IoT deploy-
ments are costly to create and operate due to the manpower
required to deploy, configure and manage thousands of de-
vices. This motivates the maximization of Return on Invest-
ment (RoI) by sharing IoT platforms with multiple parties.

In this paper, we explore how these IoT platforms can be
securely shared by multiple applications (apps), without in-
creasing hardware costs or significantly decreasing battery
life. Secure multi-app hosting is as-of yet poorly supported
by current IoT OS research [9, 12, 17]. Memory protection
often is not supported or requires additional hardware. Soft-
ware on IoT devices is not prevented from blocking or ex-
hausting essential resources. As IoT infrastructure providers
cannot share their platforms with third parties while retaining
full manageability and control of their resources, multi-app
IoT devices are not common. This is a significant roadblock
in achieving commercial large-scale IoT deployments.

To overcome this roadblock, we present CerberOS, a
resource-secure operating system for tiny multi-app IoT
nodes. The core idea of CerberOS is instruction-level mon-
itoring and fine-grained resource management for all apps
running on the device. This is achieved by an interpreting
virtualization layer, implemented through a virtual machine,
that isolates apps and separates the system into user and ker-
nel space. Resource security is paramount in our system.
Key resources, such as memory and peripherals, are man-
aged so that apps can run safely on a node without being
disrupted by other apps. Our research aims to leverage the
benefits of existing, efficient solutions while going beyond
prior work to enable resource-secure multi-app IoT devices.
Specifically, CerberOS protects the device and its apps from
any malicious or malfunctioning app.

CerberOS is implemented on a representative IoT device
based on the ATmega1284P. It is designed to be modular
and can work stand-alone but also allows the use of discrete
assets from other OSs, such as timers, scheduling and net-
working. CerberOS works on nodes with as little as 40KB
ROM and 5KB RAM and is shown to support seven coex-
isting applications. Our experimental evaluation proves that
the performance overhead and energy impact of CerberOS is
feasible for real-world IoT scenarios.

96

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2017
20–22 February, Uppsala, Sweden
© 2017 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-1-4

Figure 1. A smart city deployment with multiple stake-
holders for the city of Antwerp (Belgium) [27].

The remainder of this paper is structured as follows: Sec-
tion 2 gives the case, requirements and threat model for
multi-app IoT devices, Section 3 discusses related work,
Section 4 describes the design and architecture of CerberOS,
Section 5 presents the evaluation and Section 6 concludes.

2 Background
2.1 The Case for Sharing IoT Devices

The IoT envisions a future where billions of Internet-
connected devices are deployed in our environment to sup-
port novel cyber-physical applications. Contemporary IoT
networks are rapidly growing in scale from smart build-
ings to smart cities. Research deployments such as City of
Things [27], shown in Figure 1, and SmartSantander [24] al-
ready incorporate tens of thousands of IoT devices. How-
ever, commercial deployments of similar scale have been
slow to appear. One reason for this disparity is the unclear
RoI for large-scale IoT networks, which demand significant
up-front investment in infrastructure as well as technical staff
to deploy, manage and maintain the system.

Supporting multiple apps enables IoT infrastructure
providers to increase their RoI. Multi-app nodes allow an
IoT deployment to satisfy multiple stakeholders and there-
fore minimizes hardware costs and associated staff costs aris-
ing from the deployment, management and maintenance of
devices. IoT infrastructure providers can specialize in de-
ploying IoT infrastructure or platforms as a service and lease
out resources on underutilized devices to third parties. IoT
software developers can focus on their core competencies
while still having access to scalable and elastic hardware so-
lutions. The efficacy of this approach has been extensively
demonstrated in mainstream cloud computing and the attrac-
tiveness of such a model has led key industry players to coin
the term ‘fog computing’ [4]. Realizing multi-app IoT plat-
forms requires security mechanisms that ensure: (i) only au-
thorized parties deploy apps, (ii) apps execute as determined
by contracts, (iii) app code and data remain confidential, and
(iv) the integrity of app code and data is assured.

Large-scale IoT networks primarily consist of IETF
Class-1 devices which have around 10KB RAM and 100KB
ROM and are considered as having the minimal resources
necessary to communicate securely with the Internet [5].
The stringent resource constraints of these IoT devices drives
the development of custom lightweight OSs such as Con-
tiki, TinyOS and RIOT [9, 17, 12]. These OSs do not pro-
vide memory protection or fine-grained resource manage-

ment which are essential for securely sharing devices be-
tween untrusted third parties.

In addition, many IoT platforms are battery powered, em-
ploying energy saving techniques to achieve lifetimes of sev-
eral years on a single battery charge [28]. Energy harvesting
approaches are increasingly common but likewise impose a
strict limit on the power consumption of IoT devices. These
resource limitations must be considered when sharing IoT
platforms. In contrast to the cloud, in fog computing ev-
ery processor cycle, byte of memory and joule is precious
and must be carefully managed. The infrastructure provider
therefore requires support for monitoring and limiting the re-
sources that apps use. The app developer likewise requires
assurances that the resources they require will be available.

The ideal multi-app IoT OS executes efficiently on Class-
1 embedded devices and secures the execution and resource
usage of coexisting third-party apps. Management support is
necessary to minimize the effort needed to develop, deploy
and manage multiple apps and preserve scalability. In the
following section, we analyze these requirements in detail.
2.2 Requirements Analysis

To realize a secure multi-app IoT OS, we identify three
families of requirements: (i) core OS demands, (ii) resource-
security guarantees, and (iii) classic security support.

The core OS demands for sharing embedded devices are:
• Preemptive multi-threading: The OS must provide

mechanisms to safely and fairly execute coexisting
apps. Cooperative scheduling, used by Contiki and
TinyOS [9, 17], is insufficient since any app may block
other apps or the OS by refusing to yield. It is essential
that the OS can preempt processes to maintain control.

• Remote management support: For large-scale de-
ployments such as smart cities, dispatching employees
to service thousands of individual devices is clearly not
cost-effective. All management activities must be per-
formed remotely. This includes: deployment and re-
moval of apps, adaptation of platforms, and monitoring
of software state and node health.

• Lightweight and efficient: An IoT OS should exe-
cute efficiently on Class-1 devices with 10KB RAM
and 100KB ROM as they make up the majority of to-
day’s embedded IoT systems. Furthermore, the OS
should minimize energy consumption through duty-
cycling techniques to retain multi-year battery lifetimes.

The limited resources of IoT devices must be care-
fully managed to ensure the resources of the infrastructure
provider are spent according to contracts and resource se-
curity is maintained. Therefore, resources should not be
blocked for an unreasonable time span (e.g., processor, net-
work, peripherals) or exhausted (e.g., battery and memory):

• Contractual limitation of resource usage: Contracts
specify exactly the resources an app requires and in
which quantities, if applicable. A device should decide
to either accept or reject the app based on this contract.
This requirement protects the investment of the infras-
tructure provider and guarantees that apps have the re-
sources necessary to execute if they are accepted.

97

• Fine-grained accounting of resource usage: Ac-
counting is essential to enforce contracts and to take ap-
propriate action when resource usage of an app reaches
the contractually agreed limits. Therefore, the OS
should monitor the resource usage of all apps.

A strong base of classic security support is necessary to
prevent third parties from circumventing resource security
mechanisms or breaking confidentiality, integrity or avail-
ability of other apps:

• Memory isolation: The program logic and data of
apps must be isolated to protect their confidentiality
and integrity from other malicious or malfunctioning
apps. Current IoT OSs, such as Contiki, TinyOS and
RIOT [9, 17, 12], do not meet this requirement as they
provide unrestricted memory access to apps.

• Network security: Secure communications are essen-
tial to maintain the confidentiality and integrity of trans-
mitted data. CerberOS achieves this by using IETF and
NIST standard IoT network security, i.e., AES-128 run-
ning in CCM mode [29]. Each node has a unique ses-
sion key, which must be transferred to the network man-
ager to join the network. Shared join keys are not used.
Our research focuses on building a secure OS for the
IoT and does not contribute to network security.

• Access control: Only authorized parties may deploy
software, perform management operations or access ap-
plication APIs. This prevents unauthorized use of the
IoT infrastructure or applications. Our approach natu-
rally builds on standard multi-party access control tech-
niques, such as HTTPS.

2.3 Threat Model
The threat model details the type of attack a multi-app

OS should defend against. CerberOS uses standard network
security so confidentiality, integrity and authenticity of com-
munication is assumed and the administrator is trusted. In
addition, we assume the OS is not compromised and is part
of the trusted base of the platform.

The threat is a third-party app developer who has been
authorized to deploy apps on the IoT infrastructure. The at-
tack vector of the attacker is his ability to submit any soft-
ware to remotely upload to the devices, including malicious
or malfunctioning apps. However, he does not have physical
access and cannot reprogram the node’s firmware to replace
or change the OS. We consider three types of software at-
tacks by the deployed app: (i) disrupting operations on the
node itself, thereby committing a denial-of-service attack on
all apps of the device, (ii) interfering with a specific app, and
(iii) modifying or stealing the data of an app, for instance, by
influencing sensor readings or reading stored app data. Re-
spectively, an attacker could upload an app to crash the node,
to block a resource from being used by others and to read and
modify data from a running app. A secure multi-app IoT OS
has to defend against these attacks while still realizing the
requirements detailed in Section 2.2.
3 Related Work

This section provides an overview of IoT OSs, software
module security, interpreters for constrained devices and re-

search that considers node resource management.

3.1 Overview IoT Operating Systems
Table 1 shows an overview of common IoT OSs and how

they relate to the requirements outlined in Section 2.2. We
consider Contiki, TinyOS, RIOT and FreeRTOS [9, 17, 12,
2] due to their popularity and widespread use. These OSs
do not focus on security or resource security. None have
full memory isolation; only RIOT provides some protection
against bugs in single components due to its modular mi-
crokernel design. Only Contiki supports remote deployment
and dynamic loading of software modules. Only FreeRTOS
and RIOT provide preemptive multi-threading. Thus, exist-
ing OSs succeed only partly in meeting the requirements.

A new OS of note is Zephyr [18], a tiny open-source real-
time IoT OS, which was announced by the Linux Founda-
tion in February 2016. It focuses on a modular kernel de-
sign and divides the kernel into a core nanokernel and an
optional microkernel which provides multitasking abilities
and services such as memory and mailboxes. Zephyr aims to
be highly configurable, to support a large number of archi-
tectures and to enable scalability, security and connectivity.
While it shows similarities to our work (e.g., focus on porta-
bility and security), it supports only a single multitasking
application with no explicit user space and no dynamic load-
ing and manages device resources through synchronization
mechanisms making it unable to withstand malicious tasks.

3.2 Software Module Security
Initial IoT nodes were single-purpose where isolation

of software modules was not considered, with manufactur-
ers and researchers focusing on meeting core functionalities
within limited node resources. Recent years show increased
interest in isolating multiple software modules with diverse
approaches due to the heterogeneity of the IoT. The main dif-
ference with our work is that none of the discussed research
considers software modules and their resource usage beyond
binary access control and memory protection.

Melete [31] is a system built upon the Maté VM that sup-
ports coexisting apps for constrained nodes. Melete handles
three challenges for multi-app use cases: (i) reliable code
storage and execution, (ii) dynamic app deployment at the
network level, and (iii) reliable code distribution. Similar
to CerberOS, they identify the importance of multiple apps
in the IoT. However, Melete focuses mainly on deployment
at the network level, does not solve other app needs (e.g.,
resource security) and is less generic, being reliant on the
specialized Maté VM.

Microsoft developed the Singularity OS [13] to inves-
tigate three architectural features which are similar to our
work: software-isolated processes, contract-based channels
and manifest-based programs. Processes are isolated through
a combination of static verification and runtime checks, in-
stead of memory management hardware. Communication
between processes flows through a contract-governed chan-
nel and requires programs to specify a manifest describing
requirements and capabilities similar to our approach. Sin-
gularity is based on a custom type-safe language, Sing#, and
is designed for general computers. As such, they explore
similar ideas but for other less-constrained platforms.

98

Table 1. Comparison of popular IoT OSs in terms of multi-app device requirements.
OS Remote Management Memory Isolation Resource Security Preemptive Multi-Threading

Contiki Over-the-air, dynamic loading No No No
TinyOS Over-the-wire, single image No No No
RIOT Over-the-wire, single image Partly No Yes

FreeRTOS Over-the-wire, single image No No Yes

TrustLite [14] is a security architecture for hardware-
enforced isolation of software modules on embedded sys-
tems. Custom hardware enforces safe memory access con-
trol and loading and execution of untrusted software. It has a
small trusted base, allowing even the OS to be untrusted, and
can be instantiated with several levels of security. TrustLite
provides protection and communication between multiple
apps. In contrast to CerberOS, it does so without requiring
trust in the OS through execution-aware memory protection.
However, it is not generic and requires a specific hardware
and software approach.

3.3 Interpreters for Constrained Devices
Interpreters have been adapted to work on constrained de-

vices. Most research focuses on highlighting different ap-
proaches (e.g., high-level language VMs and thin hypervi-
sors), on enabling specific features through interpretation
(e.g., multitasking) or on proving the feasibility in terms of
performance, energy or memory cost of interpretation. To
the best of our knowledge, no research provides all the fea-
tures necessary to support resource security.

Squawk [26] is a small Java virtual machine, written
mostly in Java, that runs without an OS on embedded de-
vices. Similar to CerberOS, Squawk implements app isola-
tion mechanisms and highlights the benefits of Java on em-
bedded devices. However, Squawk requires a specific board,
the Sun SPOT, which is more powerful than Class-1 devices,
and does not support the incorporation of other OSs.

Java Card [7] is a Java implementation that allows Java
apps (applets) to securely run on smart cards. These typically
have 1KB of RAM and 16KB of ROM which imposes severe
restrictions on the language, e.g., no support for threads or
garbage collection. Java Card focuses on security and porta-
bility of applets and introduces data encapsulation, cryptog-
raphy and an applet firewall. Accordingly, it has a similar
focus but is dedicated to a more niche purpose for very con-
strained devices and requires another system for support, the
card reader. In contrast, CerberOS is a full IoT OS with no
specialized hardware or software requirements.

3.4 Resource Management on IoT nodes
Device resource management is an important topic in the

IoT but has not been widely explored for multi-app nodes.
VirtualSense [15] is a low-power wireless sensor based on

the Darjeeling VM and Contiki [6, 9]. It focuses on energy as
a resource with dynamic power management and advanced
power-performance design. VirtualSense does not consider
multiple apps or resource security, although it does support
multitasking [16]. In addition, this work is not generic, be-
ing a custom solution for a specific OS and hardware. Vir-
tualSense shows the feasibility of high-level language VMs
on constrained devices to support interesting features, like

power management, and is complimentary to our own work.
Pixie OS [19] is a sensor node OS for data-intensive ap-

plications. It implements policies for resource management,
based on a data flow programming model using resource
tickets, a representation of resource availability, and reser-
vations. Pixie OS allows for a range of policies by giving the
system control over resource management. Resource brokers
reduce complexity by mediating between low-level physical
resources and high-level application demands. CerberOS is
similar, using resource buckets to manage access and an in-
terpreter as a resource broker. Pixie OS differs in its data
flow programming model which gives the OS control over
application behavior. They focus on awareness of and adap-
tation to resource availability but do not consider resource
security and only allow a single app running on the node.
Consequently, it is an advanced approach to individual app
resource management and could be interesting to adopt into
our multi-app OS research.

Nano-RK [11] is a reservation-based real-time OS for
wireless sensor networks. It supports preemptive multitask-
ing and energy budgets. Tasks can specify their resource de-
mands and the OS provides controlled access to CPU cycles
and network packets. Nano-RK does not focus on security
but is more concerned with timeliness and energy use. As
such, it is an interesting point-of-reference for further devel-
oping our own resource management scheme.

4 Design
4.1 Overview Architecture

Our approach is based around three main concepts: (i) a
code interpreter for instruction-level monitoring and manag-
ing running apps, (ii) resource contracts which strictly de-
fine app resource usage, and (iii) per-app buckets that pro-
vide fine-grained tracking of resource usage. As all app
code execution is interpreted, the interpreter can perform
instruction-level resource monitoring and control during in-
terpretation using the contracts and buckets. These elements
form a secure layer between the apps and the underlying
system. In essence, an untrusted but monitored user space
is decoupled from a trusted kernel space by a virtualiza-
tion layer based on the interpreter. With this design, Cer-
berOS meets the requirements and threat model from Sec-
tions 2.2 and 2.3. Specifically, the interpreter provides pre-
emptive multi-threading and memory isolation and contracts
and buckets solve the resource management requirements.
The evaluation in Section 5 shows that we satisfy the re-
source efficiency requirement. Remote management is sup-
ported through over-the-air (OTA) code loading and standard
network communications to retrieve node data. The remain-
ing requirements, network security and access control, are
provided by existing technologies.

99

CerberOS implements a lightweight Java Virtual Machine
(JVM), a high-level language VM, to serve as the interpreter.
Our primary motivations for this choice were:

• Proven track record. Embedded JVMs have a strong
track record in networked embedded systems. Key ex-
amples include: Squawk, Darjeeling and Java Card [26,
6, 7]. Prior work shows that it is feasible to realize
JVMs within the constraints of embedded systems.

• Virtualization for security on shared platforms. Vir-
tualization approaches are a common way in main-
stream, non-embedded systems to improve security be-
tween programs running on the same hardware [23].

• Benefits of high-level language programming. De-
veloping IoT apps in a common high-level language
provides improved developer productivity, smaller file
sizes and portable, platform-independent apps. Other
benefits include: type safety, exception handling,
garbage collection, protection against common pro-
gramming errors and a large developer community.

CerberOS incorporates and extends uJ1, a micro JVM
(µJVM) for microcontrollers. We adapted uJ extensively
for our purposes. Primary changes include: preventing apps
from executing plain C code, support for multiple Java apps
with scheduling and runtime management, mandatory spec-
ification of resource contracts and a resource management
scheme through buckets.

Figure 2 shows the basic elements of CerberOS. Cer-
berOS is the OS running on the device and consists of a
user and kernel space. The user space contains the untrusted
apps, each with a contract. The kernel space contains the
interpreter, i.e., the virtualization layer or the µJVM, and
board support package (BSP). The interpreter divides the
insecure user and secure kernel space, provides communi-
cations between apps and monitors and controls resources
through buckets. The BSP is a layer of indirection between
the boards native hardware and software and the rest of Cer-
berOS and provides access to the software and hardware of
the board. This facilitates adaptation of CerberOS to differ-
ent boards and platforms by simply changing the BSP. Apps
are loaded on a device over the network through an IoT gate-
way after authentication. This gateway accepts, compiles
and uploads .java files to the device. These elements are
further explained in the following sections.

4.2 Basics of the µJVM
From the viewpoint of a secure multi-app OS, we con-

sider the level of Java compliance of the µJVM, how app
files are produced for and used by the µJVM and how they
are securely loaded on the node. Since the interpretation of
Java bytecode is not the focus of the paper, we do not discuss
other VM details in-depth. For more details, we refer to the
uJ website1 and related VMs [1, 6].
4.2.1 Java compliance

The µJVM is modular and can selectively support Java
features to optimize the VM for size and speed. CerberOS

1An open-source project. Available on:
http://dmitry.gr/index.php?r=05.Projects.

Figure 2. Overview design of CerberOS.

supports the Java ME framework [22]. Full-featured Cer-
berOS is compliant with the CLDC 1.1 specification and
supports features like exceptions, inheritance and floating
point calculations. CerberOS can sacrifice support for these
features, and thereby CLDC-compliance, for a smaller foot-
print. Note that the requirements in Section 2.2 are preserved
regardless of the enabled Java features. The memory impact
of the level of Java compliance is analyzed in Section 5.1.
4.2.2 Application file format

The µJVM executes bytecode stored in .ujc files. Apps
are created by developers as .java files. They are then com-
piled on the IoT gateway to bytecode in a .class file which
is further processed to optimized bytecode in .ujc files. .ujc
files are smaller in size and faster in execution speed due
to several optimizations such as discarding unused constants
and creating a table of contents for method and field look-
ups. The gateway uploads the .ujc files to the device. App
files in Java are inherently smaller than C or native code apps
since a high-level language instruction often maps to multi-
ple low-level language instructions, thereby requiring fewer
instructions taking up less space for the same functionality.
Combined with the further optimization to .ujc files, this can
lead to significantly smaller file sizes. App file sizes are fur-
ther evaluated in Section 5.3.
4.2.3 Secure code loading

CerberOS provides over-the-air (OTA) app loading which
allows for flexible and scalable remote app management and
adaptation of IoT platforms. OTA loading is done by initi-
ating a transfer through a predetermined message and then
storing the files in flash and loading them when the transfer
is complete. Only authenticated parties are able to upload
apps and file transfers confirm to the classic information se-
curity (confidentiality, integrity and availability) principles
through basic cryptography practices. Specifically, the third-
party app developer authenticates himself to the IoT gateway
using HTTPS and provides the .java file which is deployed
securely using the AES-CCM-128 security suite [29]. The

100

Figure 3. Lifecycle of an app. The top shows loading and
scheduling of apps and the bottom the monitored flow of
a bytecode instruction through the interpreter.

upper part of Figure 3 shows the file transfer and loading
part of the app lifecycle.

4.3 Resource Contracts and Buckets
App developers specify a resource contract in the code of

the app before submitting the app to a node. The contract de-
termines the resources the app requires from a device, similar
to a service level agreement. Resource contract are extensi-
ble, lightweight and user-friendly to, respectively, cover the
device capabilities, to be usable by IoT nodes, and be un-
derstandable by app developers. The upper part of Figure 3
shows the loading and contract verification part of the app
lifecycle. At load time, the node verifies if it can satisfy the
contract while staying within its resource constraints. If it
can, the device loads the app, provides it with the requested
resources and schedules it in the scheduling queue. If it can-
not, the device rejects the app and does not load it.

The abstract UJApp Java class gives the contract for-
mat through methods that indicate the specifiable resources.
Apps extend UJApp and implement its abstract methods,
specifying their desired resource amount or access through
static fields. Listing 1 shows a sample of UJApp. The
getROMMemorySize() method indicates that apps need to
specify their ROM memory requirements. Listing 2 gives a
sample of an example app which extends UJApp. The app
specifies its desired ROM memory size and implements the
relevant abstract method from UJApp. UJApp simplifies con-
tract creation for developers by serving as a template.

CerberOS implements a proof-of-concept version of the
contract where an app specifies resources and capabilities.
Table 2 shows the current resources an app contract can spec-

1 p u b l i c a b s t r a c t c l a s s UJApp{
2 p u b l i c a b s t r a c t i n t getROMMemorySize () ;
3 p u b l i c a b s t r a c t b o o l e a n [] g e t P e r i p h A c c e s s () ;
4 . . .
5 }

Listing 1. Code sample of the UJApp Java class.

1 p u b l i c c l a s s ExampleApp e x t e n d s UJApp{
2 p u b l i c s t a t i c i n t ROM MEMORY SIZE = 300 ;
3 p u b l i c s t a t i c b y t e SENSOR1 = LIGHT SENSOR ;
4 . . .
5 @Override
6 p u b l i c i n t getROMMemorySize () {
7 r e t u r n ROM MEMORY SIZE;
8 }
9 @Override

10 p u b l i c b o o l e a n [] g e t P e r i p h A c c e s s () {
11 / / i m p l e m e n t a t i o n
12 }
13 }

Listing 2. Code sample of an example app.

ify and what they mean. This specification does not capture
the full complexity of IoT peripherals or resources which is
important future work. However, the current contract imple-
mentation allows apps to specify the required memory, sen-
sor and network access and the needed priority and lifetime
of the app on the device, which is necessary for common IoT
scenarios. In addition, this implementation is rich enough to
enable leasing of IoT hardware to third parties with different
levels of priority and resource needs.

The interpreter enforces app contracts through per-app
per-resource buckets that track resource usage. The size of
a bucket is determined at load time by the contract. For ex-
ample, a bucket can track how long an app has existed on the
device or how much bandwidth it has consumed. In essence,
a contract specifies allowed capabilities and a bucket the
measure in which they have been used. Both contracts and
buckets are checked during execution. For instance, app net-
work communications is first allowed by the contract and
then checked through the bucket to determine if the app is
within its allotted bandwidth consumption.

In conclusion, every loaded app on a node has a linked
contract and associated buckets that determine what re-
sources are accessible to the app, in what quantities and in
what measure the app has used the resource.

Table 2. Possible app contract resources, their type and
what they specify.

Resource Type Specifies
RAM value Amount of dynamic memory for the app
ROM value Amount of storage memory for the app
Peripherals list Peripherals the app has access to
Network value Amount of bandwidth for the app
Priority 0-255 App priority in the scheduling queue
Lease value Amount of time the app is on the device

101

4.4 Instruction Monitoring and Execution
Key to CerberOS is runtime interpretation of the code for

instruction-level monitoring of apps. During bytecode exe-
cution of an app, the interpreter first checks the contract and
the buckets related to the app to determine if it is allowed to
execute that bytecode. Resource checks have a modifiable
granularity, depending on the bytecode. For example, Cer-
berOS can check every ten instructions if the allowed number
of operations has been reached. This is a trade-off between
accuracy and the overhead of instruction-level monitoring.
If the contract is violated, CerberOS prevents further execu-
tion and handles the app (e.g., by removing it or replacing
the instruction). If the instruction is allowed, it interprets the
bytecode and executes it. The bottom part of Figure 3 shows
the flow of a bytecode instruction through the interpreter.

4.5 CerberOS API and Platform Support
CerberOS is a general solution that works with various

hardware platforms and OSs and provides Java apps con-
trolled access to board functionalities. Apps use the API
from UJApp to, for example, set timers or interact with pe-
ripherals. This layer of indirection between apps and the
µJVM simplifies adapting apps to other platforms. The
µJVM makes select native C functions accessible to UJApp
through Java stub classes which serve as drivers for UJApp
and the extending apps. They contain no implementation but
form the link to the BSP. The BSP is the layer of indirec-
tion between the µJVM and the hardware board and under-
lying OS functionality, if any. Integration with another OS
is optional. If not desired, the BSP itself needs to imple-
ment desired features on top of the hardware board such as
scheduling, timers and networking.

Accordingly, porting to a platform requires four changes:
(i) creating a BSP which accesses the OS and board features,
(ii) integrating the µJVM in the OS scheduler, if present, or
scheduling itself if not, (iii) implementing Java stub classes
to make them accessible to UJApp, and (iv) extending UJApp
with the new functionalities, if any.

We have implemented CerberOS with an integration of
Contiki on the µPnP board [30] with an ATmega1284P mi-
crocontroller (MCU), as a stand-alone edition for the Zig-
duino platform with an ATmega128RFA1 MCU and for a
regular Windows PC. For the stand-alone version, the BSP
provides direct access to the devices hardware. Only Cer-
berOS is running and controls its own timers, scheduling
and duty-cycling. For the Windows version, the BSP pro-
vides standard board features using the Windows API. For
the µPnP version, the BSP leverages existing Contiki and
µPnP features. Here, the µJVM is a process that runs on Con-
tiki and is scheduled in its cooperative process design [9] and
uses the µPnP network stack. The µPnP version with Contiki
is our main test and evaluation platform.

4.6 Scheduling and App Management
There are two levels of scheduling: at the VM-level for

apps and at the OS-level for the µJVM and other OS tasks.
VM scheduling is multi-threaded where apps (i.e., threads)
run in their own context, manage their own stack and can
be context-switched by yielding or preemption. Therefore,
CerberOS provides preemptive multi-threading for apps even

when the BSP underneath uses an event-driven scheduler.
OS scheduling can be implemented by CerberOS or through
the integrated OS. CerberOS uses the scheduler in Contiki
which allows to suspend the µJVM when all apps are idle.

Apps are scheduled consecutively in a fixed circular
queue, in order of load time on the node. An app executes
for a time slice, defined by the priority specified in its con-
tract, and then the scheduler switches to the following one.
Since the position of an app in the queue is fixed, all apps
are guaranteed to run. An app can also yield, wait or termi-
nate itself. Yielding stops the execution of the app, allowing
the next one in the queue to go. Waiting is based on events
such as communications or timers and means the app will be
skipped in the queue while it is waiting. If the event occurs
during the execution of another app, the app will stop wait-
ing and run the next time it is reached in the queue. If all
apps are waiting, the node sleeps to conserve power.

We do not support real-time requirements for apps as-of-
yet. However, a node controls its runtime by managing the
apps and can therefore control the timing of app execution.
It could support soft-real time requirements by being strict
in what apps it accepts. Exploring scheduling and timing in
terms of apps and their contracts is future work.

5 Evaluation
We evaluate CerberOS on key metrics of constrained

nodes: memory size of the base image, execution perfor-
mance, app code size and battery lifetime. We analyze these
metrics for representative benchmarks and two realistic IoT
use cases, including a multi-app deployment.

We implemented CerberOS on top of µPnP, a full-featured
IoT platform [30], with Contiki 3.0 on the ATmega1284P
board, an 8-bit MCU with 128KB flash, 16KB RAM and
clocked at 10MHz. µPnP motes offer 802.15.4e mesh net-
work support via a SmartMesh IP radio [28]. Evaluation on
µPnP provides an efficient network stack and access to Con-
tiki features such as timers and an I/O API. In addition, it
demonstrates the feasibility and generality of our approach
to enable resource-secure multi-app IoT platforms on rep-
resentative constrained hardware and software. Finally, we
compare CerberOS with the TakaTuka and Darjeeling JVMs
as a point of reference. Metrics and figures for these JVMs
come from existing research [1, 6, 10, 20]. They are not di-
rectly comparable since they use different platforms, apps
and implementations and support other features. However,
the comparison serves to provide insight into overall perfor-
mance of embedded VMs and to further demonstrate the rea-
sonableness of our resource-secure µJVM.

5.1 Memory Impact of CerberOS
CerberOS requires additional RAM and ROM on top of

the BSP and, if applicable, integrated OS. This analysis does
not consider the memory cost of apps, which is discussed
in Section 5.3. CerberOS is modular and can turn off sup-
port for Java features, such as exceptions or 64-bit floating
point operations. Therefore, we compare three cases: (i) the
memory size of a minimal implementation of µPnP, (ii) the
memory size of a minimal CerberOS implementation which
drops support for floating point calculations, 64-bit long val-
ues, advanced exception handling and Java thread synchro-

102

Table 3. Memory cost in ROM and RAM in bytes for
versions of CerberOS and their difference.

ROM RAM ∆ROM ∆RAM
Minimal µPnP 9866 1731 - -

Minimal CerberOS 39176 4574 29310 2843
Full CerberOS 64458 4616 25282 42

nization, and (iii) the memory size of a full CerberOS imple-
mentation with CDLC-compliance. Minimal µPnP features
a network stack, timers and Contiki scheduling functional-
ity. CerberOS integrates this with our design (discussed in
Section 4) and provides multi-app management, resource se-
curity and Java support. We compile with the “avr-gcc”
toolchain, version 4.9.2, and optimize for size and speed.
Code size is given by the “avr-size” tool. App file size is
evaluated separately in Section 5.3.

Table 3 shows the three cases in terms of ROM and RAM
and the difference between consecutive versions. µPnP uses
around 10KB ROM and 2KB RAM. Minimal CerberOS re-
quires an additional 30KB ROM and 3KB RAM. Full Cer-
berOS needs an extra 25KB ROM and negligible added
RAM. The total size of the full-featured solution is around
65KB ROM and 5KB RAM. Accordingly, CerberOS is fea-
sible for Class-1 devices [5] and a minimal implementation
can even be used on more constrained devices.

The memory cost of TakaTuka and Darjeeling is around
40KB-60KB ROM and 0.5-4KB RAM, depending on the
app. These figures are comparable with CerberOS, tak-
ing into account the level of Java compliance and trade-offs
made between the µJVMs. TakaTuka achieves its low RAM
usage by customizing JVM bytecode support down to the set
used by the given program. This complicates adapting the
platform over time and prevents our security features.

5.2 CerberOS Execution Performance
CerberOS impacts software execution performance due

to bytecode interpretation overhead for individual apps and
context switch time between apps.
5.2.1 Bytecode interpretation performance

We measure the performance overhead of interpretation in
six benchmarks, implemented in both Java and native Con-
tiki C apps. The apps are encryption, storing an array, send-
ing a network packet and reading a sensor, which are core
IoT device functions; and bubble sort and pin toggle, which
serve to determine the µJVM performance characteristics.
Fine-grained timings are obtained with a logic analyzer. We
use the minimal CerberOS implementation for evaluation.

The core IoT function benchmarks reveal how CerberOS
performs for typical IoT device duties. The encryption test
measures the time to encrypt and decrypt a value. This is
commonly the most computationally heavy task a node does
for standard IoT apps. We use the lightweight Speck block
cipher [3], developed by the NSA for high performance on
constrained hardware and software, and implement it com-
pletely in Java. Speck has been tested on our range of plat-
forms (8-bit ATmega) and generally outperforms other IoT
block ciphers [8]. The test uses a 128-bit key to encrypt a
64-bit block consisting of two random 32-bit values. The

Table 4. Execution times of C and Java apps in millisec-
onds and their ratio.

C Java Java/C Ratio
Encryption 3.963ms 205.420ms 51.829

Storage 166.1ms 169.6ms 1.024
Network 12.074ms 15.782ms 1.307
Sensing 69.260ms 71.150ms 1.027

storage test measures the time to write a 50-byte array as a
block to flash. The network test measures the time to send
a 50-byte payload packet to the gateway. Only the time to
send the packet is measured, since the response time is de-
pendent on the network. The sensor reading test is a sensor
measurement from a sensor peripheral. It measures the time
to communicate over the I2C bus to get the sensor value.

Table 4 shows the execution time of the core IoT func-
tion apps in milliseconds and the Java/C ratio. The storage,
network and sensing evaluation show comparable execution
times despite the overhead of virtualization since they call
native functions made accessible by the BSP. The overhead
incurred is through code interpretation and the resource con-
tract checks on this call. This penalty is significant for short
tasks, such as a 30% overhead for sending a packet, but re-
mains feasible, in the order of milliseconds. In contrast, the
compute-heavy test, encryption, has a significant overhead
of about 50x when implemented completely in Java.

The bubble sort benchmark sorts an array of 256 decreas-
ing 32-bit integers, the worst-case bubble sort scenario with
a time complexity of O(n2). This test is not typical of the
duties performed by sensor and actuator nodes but presents a
worst-case scenario for a computationally heavy task. Bub-
ble sort has a performance penalty of about 300x, 0.164s
for C and 46.99s for Java, when implemented completely in
Java with no native function calls. Therefore, we consider
this the worst-case scenario but unrepresentative for typical
IoT apps. The pin toggle benchmark measures the time for
a function call to pass through the interpreter. Since we are
measuring the time of a trivial operation in C and compar-
ing that to an interpreted and controlled operation in Java,
it shows a performance penalty of about 1000x, 0.7µs for C
and 0.779ms for Java. This time reveals that the time to call
a Java function takes around a millisecond and so forms the
lower-bound for any Java operation done by apps.

The cost of interpreting Java versus executing native C
code is similar in both Darjeeling and TakaTuka for the
worst-case bubble sort example. Darjeeling performs bet-
ter, with a cost of up to 113x, and Takatuka performs simi-
larly, up to 324x slower. For other apps, the results are simi-
lar across the VMs: for compute-heavy tasks a performance
penalty of two orders of magnitude is possible.

Evaluation indicates that an interpretation approach is
less-suited to compute-heavy tasks implemented completely
in Java. However, these tasks are relatively rare in IoT sce-
narios due to their impact on battery life. Battery lifetime
and app execution time are further compared in Section 5.4.
In addition, it is possible to implement common compute-
heavy algorithms in C and make them accessible to apps as a
board call. Our evaluation shows that this will achieve com-

103

Table 5. App ROM code sizes in bytes for optimized Java
bytecode and for C Contiki ELF format.

C Code Java Bytecode Difference
Encryption 3146 1392 -1754 | -55.8%

Storage 1894 1108 -786 | -41.5%
Network 2090 1296 -794 | -38.0%
Sensing 1684 963 -721 | -42.8%

IoT App A 3207 2037 -1170 | -36.5%

parable execution times as when it is implemented purely in
C, for example, as in the storage test. Note however that this
analysis does reveal that apps with many Java operations or
rapid response requirements are out of scope for CerberOS.
5.2.2 App context switching performance

Context switching between apps introduces overhead be-
cause the scheduler needs to execute and a new app stack
needs to be loaded. We measure the time required to switch
between apps for different amounts of total apps. The evalu-
ation reveals that context switching takes around 2.16ms and
that the difference is negligible for more apps, increasing by
just 0.98% when going from two apps to seven apps.

5.3 App Code Size and Deployment
This section evaluates the code size of apps in CerberOS

for ROM and RAM and the impact of this size on deploy-
ment time and energy cost. For memory, we only consider
the default cost of apps in both ROM and RAM and not the
memory resource amount they specified in their contracts
since this is variable. Deploying apps on a node efficiently
requires OTA code transmission. Thus, deploying apps costs
time and consumes bandwidth and energy on the receiver
and all intermediate routing nodes. In addition, the destina-
tion node has to accept and store the app which costs memory
and energy. Therefore, app code size is important for multi-
app IoT platforms. In CerberOS, apps are coded in Java, a
high-level language, and compiled to an optimized bytecode
format which can be directly loaded on a node. Since high-
level languages are more compact, this will result in reduced
app code sizes, as discussed in Section 4.2.2. For native Con-
tiki apps, apps are coded in C and have to be compiled into an
ELF module format before they can be dynamically loaded,
which incurs a significant size overhead [25].

Table 5 shows the app ROM code sizes of the core IoT
functions benchmarks and for a representative IoT app (IoT
App A, see Section 5.4). As expected, bytecode requires be-
tween 36%-55% less bytes, even though apps in CerberOS
have an additional cost in code size because they specify con-
tracts. The contract has a fixed one-time cost of around 400
bytes, a significant relative impact for small apps but less im-
portant as they increase in size. App ROM code size is the
size of the code that has to be transmitted OTA.

Apps also require a default amount of RAM to work. Ev-
ery app is a thread which introduces a minimal cost of 218
bytes for the stack. Each app also incurs a non-fixed RAM
cost for the contract and buckets. In practice, an app costs be-
tween 400 to 600 bytes of RAM, depending on the resources
it specifies. Therefore, we support up to seven coexisting
apps, since permitting more brings us outside the scope of

Table 6. App deployment time to node in seconds, node
energy cost in Joule for C and Java apps and difference.

Time (s) Energy (J) Difference
(%)C Java C Java

Encryption 105.33 49.16 2.16 1.01 −53.2%
Storage 65.24 40.06 1.34 0.82 −38.9%
Network 71.51 46.09 1.46 0.94 −35.6%
Sensing 58.51 35.42 1.20 0.73 −39.2%

IoT App A 107.28 69.82 2.20 1.43 −35.0%

Class-1 devices when accounting for the 5KB RAM cost of
CerberOS itself. Up to ten concurrent apps have been tested
but can exceed device resource limits.

We obtain energy cost estimates for app deployment using
previous research which is based on a 50-node µPnP-Mesh
test bed with a maximum hop depth of 3 [21, 25, 30]. Table 6
gives the time and energy for deploying Java and C apps. As
expected, Java apps deploy faster and consume less energy,
up to 50% savings. This shows the benefits of compact high-
level language apps for IoT deployments.

The size of these benefits depends on the frequency of app
reconfiguration and app size. As an illustration, we consider
the energy saved with CerberOS when deploying a single
app. Our analysis shows this varies between 0.5 and 1 Joules
for relatively small apps. The µPnP board has a 3000mAh
battery at 3.2V, which stores 34560 Joules. If deploying costs
1 Joule less, it saves 0.0029% of the battery capacity per
code deployment for the reconfigured node. In dynamic use
cases over a multi-year timespan, these savings accumulate.
For instance, saving 1 Joule a day saves 5.3% of the battery
capacity over five years. In addition, this analysis does not
consider the savings at the intermediate routing nodes in a
multi-hop network. A node can route for many other nodes
which means the above savings accumulate each time one of
its children nodes is reconfigured. Analogous to the above
scenario, when routing for 10 such nodes, the routing node
would save 10 Joule a day, or 53% of the battery capacity
over five years.
5.4 Realistic IoT App Analysis

This section analyzes two representative IoT apps, IoT
App A and IoT App B, to measure CerberOS in two differ-
ent realistic use case scenarios. The IoT App A evaluation
focuses on a single IoT app to explicitly compare the char-
acteristics of a Java implementation to a C implementation.
The IoT App B evaluation focuses on the impact of multi-
ple Java apps on a constrained device to explicitly compare
a multi-purpose device to a single-purpose device.
5.4.1 Single IoT App A analysis

This section compares the execution time, network la-
tency and battery lifetime of an IoT device with a single Java
IoT app to that of devices with a single C IoT app. The
app is an example of environment monitoring and combines
core IoT functions. It receives temperature requests from a
gateway, senses the temperature, encrypts the value, stores it
in memory, reads it from memory and replies to the request
with the value. The node sleeps between requests. We im-
plemented the app in Java and C and deployed it alone on

104

the same hardware as before in a single-hop mesh network.
The code size and deployment cost are analyzed in Section
5.3. Here we consider the execution time and its effect on
response latency and battery life time.

The time between request arrival and response transmis-
sion is 0.243s for the C app and 0.659s for the Java app, an
overhead of 2.712x. Response latency is higher due to the
longer processing. However, this cost is small relative to the
total round-trip time of the request. Due to the variable na-
ture of mesh networks, this time is not deterministic. Even
in our single-hop network it varies between 0.5s and 2.5s.
As the added time for the Java version is smaller than the la-
tency variability, we consider CerberOS feasible in terms of
network latency.

Battery lifetime depends on the sampling frequency of
the gateway, which determines the duty cycle and the av-
erage current. Analysis reveals that the µPnP board con-
sumes around 10µA in sleep and 3.5mA while awake, for
which we use worst-case figures. The average power con-
sumed by the accompanying SmartMesh IP board is 40.5µA,
determined through the ‘SmartMesh Power and Performance
Estimator’2 as used in [28]. Accordingly, consumed power
during sleep is 50.5µA and while awake is 3.54mA. From
these figures, we determine the battery lifetime in function
of how often the device is sampled. Figure 4 charts the life-
time of a node with a 3000mAh battery in terms of a loga-
rithmic sampling rate expressed in seconds. The impact of
CerberOS is highest for fast sampling rates, halving the life-
time for sampling rates faster than once every 10 seconds.
Beyond this point the impact decreases rapidly, as the node
is sleeping longer. For a 100-second sample rate, the rela-
tive reduction is 20%, for a 4-minute rate, 10%, and for a
15-minute rate, 3%. Slower sampling quickly leads to a low
energy impact which becomes negligible for sampling rates
above hours. Even for fast sample rates, CerberOS achieves
multi-month lifetimes and does not exceed more than a 60%
reduction compared to a native implementation.
5.4.2 Multiple IoT App B analysis

This section analyzes the impact of running multiple apps
on a single device in terms of performance and battery life-
time. Ideally, the impact scales linearly with the amount of
apps. In practice, there is additional overhead due to schedul-
ing and app management. We test CerberOS with the same
Java IoT app deployed one, three, five and seven times. The
Java apps are compared against the ideal case where addi-
tional apps require no extra overhead. We do not compare
against multiple C apps since concurrent apps in Contiki are
not usable in realistic use cases, due to the lack of preemptive
multi-threading and as discussed in Section 2.2, and because
the ideal case is a stronger comparison. We do analyze the
battery lifetime of a single-purpose device with a single C
app. The performance and lifetime of a single-purpose C
app device compared to a multi-purpose Java app device is
the basic economic argument for sharing IoT devices with
CerberOS.

IoT App B is, similar to the one in the previous section,
representative of real use case IoT apps. It senses the hu-

2Available on: http://www.linear.com/docs/42452.

0.381

2.531

5.807

6.670 6.770 6.780 6.781

0.146

1.221

4.660

6.486
6.751 6.778 6.781

0

1

2

3

4

5

6

7

8

1 10 100 1000 10000 100000 1000000

B
at

te
ry

 L
if

et
im

e
(y

ea
rs

)

Sampling Rate (s)

IoT App in C

IoT App in Java

~16 min ~3 hours ~1 day

Figure 4. Battery lifetime in years for node sampling
rates in seconds with IoT app A.

Table 7. Execution times of a C app and Java apps in
seconds and the overhead compared to linear scaling.

#Apps Tot. Exec. time Overhead to Linear Scaling
1 C App 0.101s N/A | N/A

1 Java App 0.477s 0.000s | 0%
3 Java Apps 1.560s 0.128s | 9%
5 Java Apps 2.637s 0.250s | 10%
7 Java Apps 3.716s 0.374s | 11%

midity every user-specified period, encrypts the value, stores
and reads it, does I/O to a local screen and sends the value
to the gateway. Here we consider the increase in execution
time and its effect on the battery lifetime as more apps are
deployed and the sampling rate is increased.

Table 7 shows the total execution time for all the apps to
run consecutively and the absolute and relative difference of
that time compared to the time of a single app linearly scaled
to the total amount of apps. A single Java app requires 0.477s
to run to completion while the C app requires 0.101s for this
case. Scheduling, context switching and managing three, five
or seven Java apps causes additional overhead beyond linear
scaling which is adding the extra app execution times. The
relative size of the overhead increases as more apps are added
since scheduling and managing more apps takes longer. For
the worst-case seven app scenario, this overhead can be up to
0.374s. The increase in overhead is reasonable when com-
pared to linear scaling and varies between 9% for the three
app case to 11% for the seven app.

Important is the feasibility of running multiple apps on a
constrained device when compared to a single-purpose de-
vice. Figure 7 shows how multiple apps compare in terms of
battery lifetime and sampling rate to a device with a single
C app. For this, we reuse the same energy figures as in Sec-
tion 5.4.1. As before, battery lifetime largely depends on the
sample rate. For a 10-second sample rate, the C app allows
for a 4-year battery lifetime, the single Java app still man-
ages a 1.58-year lifetime but the seven Java app case reduces
lifetime to 3 months which is a 16x reduction in lifetime

105

Figure 5. Battery lifetime in years for node sampling
rates in seconds for multiple apps (IoT app B).

compared to C. However, as before, with slower and more
realistic sampling rates, the impact quickly reduces. For a
100-second sample rate, the seven app case reduces lifetime
to a third while supporting seven times the amount of apps,
in Java. For a 15-min sampling rate, the reduction in lifetime
for the seven app case reduces to 20%. For a (multi-)hour
sampling rate, the impact becomes negligible (< 5%).
5.4.3 Discussion on feasibility

Evaluation shows that CerberOS is possible for multi-app
IoT deployments in two different realistic use cases depend-
ing on the sampling rate (whether request/reply- or period-
based). Common sample rates in the non real-time embed-
ded IoT world are in the order of minutes to hours for which
the analysis shows that the energy impact of Java apps is fea-
sible. Furthermore, the results reveal that, even for multiple
apps, battery lifetime is determined mainly by the sampling
rate and scheduling, context switching and app management
of multiple apps incurs an acceptable increase in execution
time overhead. Finally, while the reduction in lifetime for
the seven app case for faster sampling rates (< 10-minutes)
is significant, the device supports seven apps instead of one
which can be a net benefit, depending on the use case. These
results prove that a multi-purpose device with CerberOS is
feasible compared to single-purpose devices while unlock-
ing several benefits such as the use of a high-level language,
resource security and secure shareable infrastructure.

5.5 Security Discussion
In this section, we informally discuss that CerberOS

meets the threat model as described in Section 2.3. Specifi-
cally, we argue that the three identified attacks by a deployed
malicious app are impossible on a system that is designed
like CerberOS. These attacks are: (i) rendering the device
inoperable, (ii) disrupting other apps and (iii) modifying or
stealing data from other apps.

Rendering the device inoperable. An app can try to
break the device through three broad categories of attack: (i)
crashing through execution of nonsensical instructions, for
instance, divide-by-zero operations, (ii) by writing into es-
sential memory spaces, such as the OS, and (iii) by depleting
the battery deliberately. The first attack is prevented since

an app can only execute Java code. This code is interpreted
and, if it is nonsensical, the device will not execute it. The
second attack is prevented since apps are isolated; they only
have access to their own reserved memory space and are pre-
vented from accessing other memory, such as where the OS
resides. The third attack is prevented since an app can only
execute a contractually limited number of operations (e.g., as
determined by priority) on the CPU, network, etc. It cannot
keep the device busy for longer than the agreed upon con-
tract; once it reaches its resource limits it is stopped from
executing further.

Disrupting other apps. An app can try to attack another
app on the device through two broad categories of attack: (i)
breaking the other app by directly overwriting its code, and
(ii) interfering with the other app by blocking or stealing its
essential resources, such as hogging the sensors the other app
requires. The first attack is impossible, since, as discussed
before, concurrent apps are isolated and cannot write to out-
side memory. The second attack is prevented since CerberOS
ensures resource security. The app cannot permanently block
resources so that other apps have no access since its resource
usage is tracked by buckets.

Modifying or stealing data from other apps. An app
can try to steal or modify data from another app, for instance,
by modifying sensor readings or looking at stored app data.
This is prevented since apps are isolated from each other,
therefore, an app cannot read or write in the address space
of another app. Furthermore, an app cannot influence sensor
readings since the app is also isolated from the OS and hard-
ware board. Thus, an app cannot break the confidentiality or
integrity of the data of another app.

6 Conclusions and future work
This paper presents CerberOS, the first resource-secure

OS for multi-app IoT devices. CerberOS maximizes RoI on
IoT deployments by supporting secure shared platforms be-
tween multiple parties and stakeholders. CerberOS realizes
the vision of secure tiny multi-app embedded nodes by pro-
viding not only strong guarantees on the confidentiality and
integrity of app data but also guarantees on the provision and
use of key resources such as computation, storage, sensors,
actuators and energy.

A virtualization layer, mandatory contract specification
and resource tracking through monitoring buckets allow for
the management and security of coexisting apps with fine-
grained resource management. Together, these elements
meet the discussed requirements and provide an answer to
the threat model. Furthermore, the interpreter enables the use
of Java for app development, unlocking high-level language
benefits such as increased developer productivity and porta-
bility. CerberOS works on IoT nodes as constrained as Class-
1 devices and requires no special hardware or software mod-
ules but can be implemented stand-alone or integrate popu-
lar IoT OSs such as Contiki. Results show that CerberOS
has a comparable memory cost and execution performance
to other similar systems while also supporting multiple apps
and resource security. In addition, we have demonstrated that
app bytecode deployment is more efficient in terms of time,
energy and memory savings at the node. Finally, an analysis

106

of representative IoT apps shows that the energy impact of
our system is feasible for real use cases, even when consid-
ering multi-app deployments.

Since CerberOS is a fully fledged OS, there are plenty
of interesting opportunities for future work. Primary future
work includes expanding the resource contracts and buckets
to better handle the heterogeneity in the IoT and implement-
ing the ability to handle soft real-time requirements. Also
of interest is exploring how the secure resource management
scheme can be made more dynamic and incorporate context
awareness to further improve resource security, e.g., in the
case of outside denial-of-service attacks. Finally, we would
like to leverage existing research for high-level languages to
unlock more of their benefits on embedded devices. An ex-
ample is doing bytecode analysis to help predetermine node
and app behavior. To conclude, we are planning to release
the source code in the future with the aim to build a commu-
nity of app and OS developers around CerberOS.
7 Acknowledgments

This research is partially funded by the Research Fund
KU Leuven and the imec High Impact Initiative Distributed
Trust. The authors thank Dmitry Grinberg for allowing the
use and adaptation of uJ, available on http://dmitry.gr.
8 References

[1] F. Aslam, L. Fennell, C. Schindelhauer, P. Thiemann, G. Ernst,
E. Haussmann, S. Rührup, and Z. A. Uzmi. Optimized java binary
and virtual machine for tiny motes. In Distributed Computing in Sen-
sor Systems, pages 15–30. Springer, 2010.

[2] R. Barry. Freertos, a free open source rtos for small embedded real
time systems. http://www.freertos.org/.

[3] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers. The simon and speck lightweight block ciphers. In Proc.
of the 52nd Annual Design Automation Conference, page 175. ACM,
2015.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the internet of things. In Proc. of the first edition of the MCC
workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[5] C. Bormann, M. Ersue, and A. Keranen. Terminology for constrained-
node networks. RFC 7228, RFC Editor, May 2014. http://www.
rfc-editor.org/rfc/rfc7228.txt.

[6] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich
vm for the resource poor. In Proc. of the 7th ACM Conference on
Embedded Networked Sensor Systems, pages 169–182. ACM, 2009.

[7] Z. Chen. Java card technology for smart cards: architecture and pro-
grammer’s guide. Addison-Wesley Professional, 2000.

[8] D. Dinu, Y. Le Corre, D. Khovratovich, L. Perrin, J. Großschädl, and
A. Biryukov. Triathlon of lightweight block ciphers for the internet of
things. IACR Cryptology ePrint Archive, 2015:209, 2015.

[9] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Local Com-
puter Networks, 2004. 29th Annual IEEE International Conference
on, pages 455–462. IEEE, 2004.

[10] J. Ellul. Run-time compilation techniques for wireless sensor net-
works. PhD thesis, University of Southampton, 2012.

[11] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-rk: an energy-aware
resource-centric rtos for sensor networks. In 26th IEEE International
Real-Time Systems Symposium (RTSS’05), pages 10–pp. IEEE, 2005.

[12] O. Hahm, E. Baccelli, M. Günes, M. Wählisch, and T. C. Schmidt.
Riot os: Towards an os for the internet of things. In Proc. of the
32nd IEEE International Conference on Computer Communications
(INFOCOM), Poster Session, 2013.

[13] G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack.
ACM SIGOPS Operating Systems Review, 41(2):37–49, 2007.

[14] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. Trustlite: A
security architecture for tiny embedded devices. In Proc. of the Ninth
European Conference on Computer Systems, page 10. ACM, 2014.

[15] E. Lattanzi and A. Bogliolo. Virtualsense: A java-based open platform
for ultra-low-power wireless sensor nodes. International Journal of
Distributed Sensor Networks, 2012, 2012.

[16] E. Lattanzi, V. Freschi, and A. Bogliolo. Supporting preemptive mul-
titasking in wireless sensor networks. International Journal of Dis-
tributed Sensor Networks, 2014, 2014.

[17] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An
operating system for sensor networks. In Ambient intelligence, pages
115–148. Springer, 2005.

[18] Linux Foundation. Introduction to the zephyr - zephyr project doc-
umentation; 2016. https://www.zephyrproject.org/about, Last
access: September 2016.

[19] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh.
Resource aware programming in the pixie os. In Proc. of the 6th
ACM conference on Embedded network sensor systems, pages 211–
224. ACM, 2008.

[20] O. Maye and M. Maaser. Comparing java virtual machines for sensor
nodes. In Grid and Pervasive Computing, pages 181–188. Springer,
2013.

[21] G. S. Ramachandran, N. Matthys, W. Daniels, W. Joosen, and
D. Hughes. Building dynamic and dependable component-based
internet-of-things applications with dawn. In Proc. of the 19th Inter-
national ACM SIGSOFT Symposium on Component-Based Software
Engineering, number 19, 2016.

[22] R. Rischpater. Beginning Java ME Platform. Apress, 2008.
[23] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on

concepts, taxonomy and associated security issues. In Computer and
Network Technology (ICCNT), 2010 Second International Conference
on, pages 222–226. IEEE, 2010.

[24] L. Sanchez, J. A. Galache, V. Gutierrez, J. M. Hernandez, J. Bernat,
A. Gluhak, and T. Garcia. Smartsantander: The meeting point between
future internet research and experimentation and the smart cities. In
Future Network & Mobile Summit (FutureNetw), 2011, pages 1–8.
IEEE, 2011.

[25] G. Sankar Ramachandran, W. Daniels, N. Matthys, C. Huygens,
S. Michiels, W. Joosen, J. Meneghello, K. Lee, E. Canete, M. Diaz Ro-
driguez, et al. Measuring and modeling the energy cost of reconfigu-
ration in sensor networks. Sensors Journal, IEEE, 15(6):3381–3389,
2015.

[26] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java
on the bare metal of wireless sensor devices: the squawk java virtual
machine. In Proc. of the 2nd international conference on Virtual exe-
cution environments, pages 78–88. ACM, 2006.

[27] N. Walravens. Operationalising the concept of the smart city as a local
innovation platform: The city of things lab in antwerp, belgium. In
International Conference on Smart Cities, pages 128–136. Springer,
2016.

[28] T. Watteyne, J. Weiss, L. Doherty, and J. Simon. Industrial ieee802.
15.4e networks: Performance and trade-offs. In Communications
(ICC), IEEE International Conference on, pages 604–609. IEEE,
2015.

[29] Y. Xiao, S. Sethi, H.-H. Chen, and B. Sun. Security services and en-
hancements in the ieee 802.15.4 wireless sensor networks. In GLOBE-
COM’05. IEEE Global Telecommunications Conference, 2005., vol-
ume 3, pages 5–pp. IEEE, 2005.

[30] F. Yang, N. Matthys, R. Bachiller, S. Michiels, W. Joosen, and
D. Hughes. µpnp: plug and play peripherals for the internet of things.
In Proc. of the Tenth European Conference on Computer Systems,
page 25. ACM, 2015.

[31] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun. Supporting concur-
rent applications in wireless sensor networks. In Proc. of the 4th in-
ternational conference on Embedded networked sensor systems, pages
139–152. ACM, 2006.

107

