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Abstract
Observing wireless embedded systems is difficult because

of resource constraints and tight interaction with the envi-
ronment. In this paper, we develop a method that can recon-
struct the entire control flow of a program based on recorded
state changes (time and state) of I/O pins. We instrument
program binaries by statically inserting instructions that alter
the states of a set of I/O pins. During program execution, the
overhead of added instructions must be kept as low as possi-
ble to preserve the original program behavior. We first adapt
an existing software-only placement method to generate an
unambiguous pattern on the I/O pins for every possible exe-
cution path. Then, we make use of recorded timestamps to
further reduce the runtime overhead substantially. This tim-
ing information is extracted from the executable by means of
an elaborate static analysis. An algorithm is presented that
safely reduces the number of recorded events while still be-
ing able to uniquely determine the executed program path.
Experiments on a testbed show that using time information
reduces the runtime overhead by up to 38.3% for typical ap-
plications. The average runtime overhead is 19%.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Tracing

General Terms
Design, Experimentation, Measurement, Algorithms

Keywords
Control flow tracing, instrumentation, time analysis, em-

bedded systems

1 Introduction
Networked wireless embedded systems, known as sensor

networks, cyber-physical systems or the Internet of Things
have been applied in various fields: environmental monitor-
ing [11], personal health and medicine [24, 2], and surveil-

lance [23], to name only a few. Typically, components of
such systems are small, low-power nodes that are equipped
with a wireless communication module. Although there have
been many successful deployments of such systems over the
last ten years, building them is still a difficult task. Rea-
sons for this are: (i) the distributed characteristics and un-
reliable communication channels of wireless embedded sys-
tems makes it difficult to build precise models. (ii) Nodes
have a scarce energy budget, since batteries are heavy and
expensive, and long periods of unattended lifetime are a pre-
requisite. Keeping costs and energy requirements low leads
to hardware platforms that offer just enough memory and
compute power for the task at hand [16]. Due to the lim-
ited resources, systems regularly operate on the limits of the
available computing, energy and communication capabili-
ties. Therefore, the risk of misbehavior in terms of functional
and non-functional properties is high. Besides careful design
approaches, it appears that extensive testing and debugging
is essential for a successful design strategy [40, 25]. How-
ever, methods to increase observability and controllability of
executed programs have to cope with very little resources.

Methods applied for debugging software on a single node
range from simple LED observations, over printf state-
ments to in-system debuggers. Testbed infrastructure ex-
tends the observability of program execution to an entire
network. All these debugging methods provide insights into
particular parts of the running program, but lack the ability
to accurately trace the entire control flow of a program. As
such, a program has to be (re-)instrumented every time for
a specific goal. This is even true for in-system debuggers,
since debugging interface bandwidths limit the extractable
runtime information [29, 31].

The use of program flow tracing is not limited to debug-
ging and failure diagnosis, but it is also applicable to pro-
gram optimization or to collect software metrics like cov-
erage [35, 26]. In the area of general purpose computing,
software-only methods exist to completely trace program ex-
ecutions [20]. However, these methods have shown to be
prohibitive when applied to wireless embedded systems [30].
Therefore, related approaches only trace a subset of the pro-
gram, or instrument at a higher abstraction level, e.g., func-
tion calls [19]. Some microcontrollers include dedicated pro-
gram flow tracing hardware inside the chip. The embed-
ded trace macrocell (ETM) in selected ARM chips allows
to extract a data stream of executed instructions. However,
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on-chip hardware debugging functionality comes at an addi-
tional cost in terms of die size and pin count [15]. The major-
ity of recent node platforms, exemplified in Table 1, does not
support hardware assisted tracing. In the real-time domain,
approaches exist to measure execution times for worst case
execution time analysis by tracing GPIO lines [9]. These so-
lutions typically target more powerful processors, e.g., MIPS
or PowerPC.

Table 1. Recent node platforms. The Cortex-M ETM
module allows to extract program flow traces.

Name Year Architecture HW tracing
OpenMote [37] 2015 Cortex-M3 -
panStamp NRG 2 [1] 2015 MSP430 -
WandStem [33] 2016 Cortex-M3 ETM
OpenMote+ [36] 2016 Cortex-M4 ETM
Storm [3] 2016 Cortex-M4 -

Contributions and road-map. In this paper, we propose
a novel hardware/software program flow tracing method that
can be applied to trace the full program execution on instruc-
tion level in a pre-deployment testbed environment. Sim-
ilar as [9], our approach relies on an external monitoring
device capable of observing GPIO state changes, e.g., a
logic analyzer. Testbeds with similar monitoring capabili-
ties [10, 21, 17, 27] allow to apply our approach to a large
number of nodes. In contrast to architecture specific hard-
ware debugging facilities, our approach only requires some
spare GPIO pins, which makes it applicable to virtually any
node platform.

Inserting program statements for the purpose of tracing
adds runtime overhead, i.e., additional CPU cycles. This
overhead influences the program behavior and should there-
fore be minimal. We use information about execution time
to reduce the runtime overhead of existing instrumentation
approaches substantially. The execution time on the targeted
systems’ processor architectures is predictable due to the ab-
sence of caches, floating point units or branch speculation.
We leverage this by extracting timing information from the
executable by means of an elaborate static analysis.

We present an algorithm that reduces the number of
recorded events while still being able to uniquely determine
the executed program path.

In summary, this paper makes following contributions:
1. We design a method to trace program flow down to the

instruction level using GPIO pin recording.

2. In Sec. 3, we present a new algorithm to reduce the
number of emitted GPIO changes for tracing by exploit-
ing time information.

3. In Sec. 4, we apply this algorithm to build a tool for
MSP430 based platforms. It performs a static analysis
of the program binary, adds instrumentation code and
reconstructs traces from recorded GPIO events.

We experimentally show the influence of our new approach
on different TinyOS and ContikiOS applications in a testbed
of 31 nodes. The evaluation in Sec. 5 shows that our method
adds an average runtime overhead of 19%. The use of time
information reduces the runtime overhead by up to 38.3%.

In addition, we find that instrumentation has negligible in-
fluence on the reliability of Glossy [14], a timing sensitive
flooding architecture that relies on constructive radio inter-
ference. In Sec. 6, we exemplify the usefulness of control
flow tracing in two case studies.

2 Related Work
Tracing Program Execution. The problem of efficiently
tracing and profiling program executions has been studied
for several decades in the area of general purpose computing.
One aspect of this problem is the question of where to best
put witnesses (instrumentation code) in order to faithfully
reconstruct the program flow [5]. Succeeding work found
an efficient encoding of consecutive witnesses in program
paths [6] and in whole programs [20]. We build on find-
ings in [5] and extend these methods to make use of time in-
formation available when tracing embedded systems with an
external observer. Since we can rely on external processing,
our focus is to reduce the impact on the target system rather
than to efficiently encode and compress traces. The afore-
mentioned techniques cannot be directly applied to wireless
embedded systems because of the scarce resources available
on these devices.

Tracing program flow by monitoring GPIO lines has been
done in the area of real-time systems [9, 39]. In particu-
lar, the pWCET tool instruments source code and traces pro-
gram flow using this method [7]. However, the aim of these
approaches is to measure the execution time of a program.
In contrast, our method is based on a timing model of the
processor and uses execution time as a means to substan-
tially reduce the induced tracing overhead. Traces of either
method can be used for measurement based worst case exe-
cution time analysis [8].
Wireless embedded systems. Software solutions for tracing
wireless embedded systems instrument program code with
logging instructions and store the generated trace in flash
memory or transmit it over radio or serial communication in-
terfaces. In [30], instrumentation code is inserted at branch
instructions and an efficient encoding is used to log control
flow traces to flash memory. Similarly, in [38] the authors in-
strument each basic block of the program and use time infor-
mation to compress the generated trace. In contrast to [38],
our solution avoids putting witnesses on every single basic
block, and we can also handle nested loops where the exact
number of iterations is unknown at compile time.

Another instrumentation approach is pursued by
Tardis [32], which rather logs non-deterministic program
inputs. These inputs are then fed to a simulator when
replaying the program execution. A combination of control
flow and data tracing is employed by LibReplay [19]. By
logging function call arguments, program execution at
function level is logged for replay.

While software solutions can provide very accurate infor-
mation about the state of a node, the resources required for
processing and storing the traces render such an approach
unsuitable to trace time sensitive behavior. Indeed, exper-
iments with Tardis reveal that the CPU duty cycle of stan-
dard node applications can almost double when tracing is
enabled [32]. In addition, software instrumentation poten-
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Figure 1. Overview of the tracing process.

tially produces data streams that easily exceed the data pro-
duced by the application itself, rendering instrumentation of
the whole program prohibitive if the trace needs to be stored
on the node itself.
Hardware Assisted Tracing. Additional hardware offloads
data processing from the node to an external observer plat-
form, providing an out-of-band communication channel.
Aveksha [31] uses a debug board extension to trace events
of interest on a single target node using the on-chip debug
module of the MSP430 microcontroller. A low-cost and net-
worked solution is provided by Minerva [29]. On-chip debug
modules typically provide functions handy for interactive
debugging (watch points, break points, reading and writing
state information). Tracing the program flow by other means
than polling the program counter is usually not possible. Re-
construction of the entire program flow might be possible if
the polling interval is short enough. Recent processors in-
clude a special hardware tracing module to directly output
trace information of the running program [4, 18]. However,
typical sensor node platforms include lower end microcon-
trollers that do not include such features. Moreover, hard-
ware debugging features are highly architecture dependent
and therefore limited to specific node platforms.

Compared to existing hardware based tracing solutions,
our approach is more portable and generally applicable since
it only requires a few spare GPIO pins of a microcontroller
instead of an architecture specific debug module.

3 Control Flow Tracing
An overview of our approach to control flow tracing is

given in Fig. 1. We first statically instrument a program:
the program binary is analyzed and witnesses are inserted at
suitable locations. A witness is emitted whenever the control
flow of the program passes its location. The instrumented
binary is then loaded onto a set of nodes. During execution,
we record the emitted witnesses. By combining the trace
of witnesses with the extracted program structure, a trace of
the program itself is reconstructed. In our case, witnesses
are encoded into GPIO state changes and recorded using an
external monitoring device.

Such an instrumentation has to fulfill the following re-
quirements: (i) the emitted witness stream must be unam-
biguously mappable to the original program execution, and
(ii) the runtime overhead of added instructions must be low
in order to preserve the original behavior of the program.

Next, we first introduce in Sec. 3.1 the witness place-
ment algorithm by Ball and Larus, which serves as baseline.

Then, in Sec. 3.2, we improve the baseline instrumentation
approach by making use of timestamps taken by the record-
ing device. Finally, in Sec. 3.3 we show how we efficiently
encode witnesses using a limited number of GPIO pins.

3.1 Ball and Larus
The algorithm by Ball and Larus [5] efficiently places

witnesses onto edges in a given control flow graph G =
(V,E,W ). Every procedure (e.g., function, interrupt handler)
in a program is represented by a separate control flow graph.
Basic blocks (groups of uninterrupted sequences of instruc-
tions) are associated with vertices v ∈V , and directed edges
e ∈ E are transitions between basic blocks. Annotated edge
weights w ∈W represent the expected number of times each
transition is taken during program execution. Weights w can
be obtained by profiling or by using a heuristic approach.

The algorithm optimizes the number of witnesses ob-
served at runtime, i.e., minimizing the total weight of all in-
strumented edges. As finding the minimal-cost solution is
NP complete [5], Ball and Larus propose to use a heuristic
to find a good solution: first, a maximal spanning tree on G
is built. Then, witnesses are put on all edges not in the span-
ning tree. This procedure guarantees that there is only one
possible witness-free path between any two witnesses.

To follow the program flow in between different control
flow graphs, blocking witnesses are introduced. Blocking
witnesses are placed in the control flow graph on edges pre-
ceding call sites or exits of functions.

3.2 Exploiting Time Information
Logic analyzers or testbeds with GPIO tracing abilities

not only capture the states of the I/O pins, but also the time
of the event, i.e., when a state changed. Fig. 2 shows two

A

B

C D

E

Figure 2. Execution time measurements allow to deter-
mine the control flow between two witnesses (black cir-
cles). Example for a simple loop (left), and for a graph
with different execution times for each branch (right).
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Figure 3. CPU clock speed measurement on an MSP430.
The clock frequency varies, here up to 30kHz (0.7%).

excerpts of a control flow graph where time information can
reduce the overhead of instrumentation. On the left, we can
measure the execution time between the two witnesses (black
circles) to infer the number of loop iterations. This renders
the crossed out witness superfluous. On the right, if the ex-
ecution times for the sequence B−C−E is different from
B−D− E, we can again infer the program flow from the
time interval between the two remaining witnesses.

Both time measurements and actual execution time might
be affected by uncertainties. Time measurements have a min-
imal time resolution, while execution times are affected by
the stability of the processor’s clock. Fig. 3 shows a mea-
surement of the CPU’s main clock on a TelosB node that was
duty-cycling the radio transceiver. The resulting variation
in power dissipation leads to changes in the supply voltage,
and in consequence alters the speed of program execution.
Based on these observations, we conclude that time uncer-
tainties need to be well incorporated in a method that infers
execution flow based on time measurements.

3.2.1 Problem Definition and Modeling
Program model. To describe the problem more formally, we
extend the given control flow graph to G = (V,E,W,T,B).
As before, G is a directed graph, and every procedure of the
program is represented by a single instance of G. Vertices v∈
V represent basic blocks and edges e∈ E transitions between
them. Weights w(e) ∈W are the expected number of times a
transition is taken at runtime.

In addition, execution times of basic blocks are annotated
to vertices as costs t(v) ∈ T , and every execution of the pro-
cedure corresponds to a path in G, i.e. a sequence of vertices
and edges. To take uncertainties in the execution times into
account, T actually provides execution time intervals. The
execution time t(v) of the basic block associated to v is in
the interval t(v) ∈ T (v) = [l(v),u(v)]. With each vertex v,
there is also associated a bound b(v) ∈ B which bounds the
number of times the program flow may pass the correspond-
ing basic block, possibly infinity if there is no bound known.
In other words, any (feasible) path has b(v) or fewer occur-
rences of vertex v in its sequence.

We add two special vertices to G, an ENTRY vertex that
has an edge eentry to the entry of the procedure, and an EXIT
vertex that has incoming edges eexit,i from every returning
vertex. These elements are added for the sake of modeling
and do not materialize in any real instrumentation code. A
witness set Ewitt ⊆ E contains all edges that can be observed
during execution. Paths are sequences of edges and vertices

in G. For the witnesses ei,e j ∈ Ewitt, we denote the set of
witness-free paths leading from ei to e j as path?i→ j, i.e., all
paths that can reach the edge e j when starting at ei without
passing another edge of the witness set.
Problem definition. Our goal is to find a set of edges
e ∈ Ewitt ⊆ E that minimizes the expected runtime overhead
C(Ewitt), i.e., the total weight of the edges in the set

C(Ewitt) = ∑
e∈Ewitt

w(e). (1)

To ensure that we can safely reconstruct the program path
taken, it is mandatory that all the witness-free paths between
any pair of witnesses and ENTRY and EXIT have distinguish-
able execution times. Therefore, we have {eentry,eexit} ⊆
Ewitt, and for every pair of ei,e j ∈ Ewitt and for every pair
of disjoint witness-free paths p,q ∈ path?i→ j between ei and
e j it must hold that

max

(
∑
v∈p

l(v),∑
v∈q

l(v)

)
−min

(
∑
v∈p

u(v),∑
v∈q

u(v)

)
> δ.

(2)
This condition ensures that the total execution time of two

different paths between witnesses differs by more than the
measurement’s time resolution δ. In other words, in an ad-
missible witness set there are no two disjoint witness-free
paths between any pair of witnesses whose execution times
cannot be distinguished. In the following, we refer to paths
that are not distinguishable in time as paths coinciding in
time.
3.2.2 Approach

The problem has the same objective as the baseline ap-
proach in Sec. 3.1, namely to minimize the number of times
a witness is encountered during runtime. However, the con-
ditions to meet are more relaxed. We do not require to have
only one single witness-free path between two witnesses.
We even allow cycles in the path, as long as the resulting
paths do not coincide in execution time. While this might
help to reduce the runtime cost of instrumentation, it makes
the problem computationally more difficult to solve because
program loops and possibly overlapping cycles in the graph
lead to an exponentially growing number of paths between
two witnesses. In the example shown in Fig. 4, there are two
possible paths that can be taken within one loop iteration,
leading to 2n different possible paths of n iterations.

Because of these difficulties, we aim at finding a good
heuristic rather than an optimal solution. The goal of the
heuristic is to reduce the complexity of the problem while
still being able to reduce the sum of the edge weights in the
witness set. In the following, we apply two strategies for
complexity reduction: (i) we consider only a subset of all
edges in G to be eligible to bear witnesses, and (ii) we find
a graph property that helps to quickly discern when paths
between two witnesses are unlikely to be distinguishable.

In the following, we derive a witness placement method
with an upper bounded cost function C(Ewitt)≤C0.
3.2.3 Heuristic Overview

An overview on the heuristic is given in Algorithm 1. The
key idea is to initially start with a feasible witness set Ein ∈E.
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DO
IF B
C

ELSE
D

ENDIF
WHILE E

ENTRY

EXIT

B

C D
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t = [3,4]
b = 10

t = [5,6]
b = 10

t = [1,2]
b = 8

t = [4,5]
b = 10

Figure 4. Example program with while loop (left) and
resulting annotated graph (right); edge weights omitted.

p

a

b

e1

Figure 5. An initial witness set {a,b,e1} and witness-free
paths (dashed lines). Neither removing a nor b can make
e1 removable, if e1 cannot be removed with a and b.

Then, we successively try to remove every witness in the set,
starting from the one with the largest weight w(e). A witness
can be removed if the remaining witness set does still fulfill
(2), as verified with the function isAdmissible in Algorithm 1.
Since we only remove edges from the set, the total weight of
edges in the set can only decrease. The total weight of Ein is
therefore at the same time a safe upper bound on the resulting
cost of the heuristic. We select Ein to be the edges determined
by the baseline approach without time information.

This approach has some favorable properties: (i) it guar-
antees that the resulting solution is at least as good as the
baseline solution, i.e., C(Eout) ≤ C(Ein), (ii) it only needs
to perform |Ein| admission tests, which significantly reduces
the search space, and (iii) for every admission test, only the
subgraph that is affected by the removed witness has to be
assessed, since we already start with a feasible witness set.

Algorithm 1 Instrumentation
Input: G(V,E,W,T,B): Control Flow Graph, Ein: Initial feasible witness

set
Output: Eout: Reduced witness set
1: Eout← Ein
2: sort descending Eout according to W (Eout)
3: for all e ∈ Eout do
4: if isAdmissible(G, Eout \ e) then
5: Eout← Eout \ e
6: end if
7: end for

To see why only |Ein| tests are necessary, let us consider
the example in Fig. 5. Suppose that we first try to remove
e1 from the witness set. If we cannot remove this witness, it
means that there must be at least two paths connecting two

er

ein

eout

Figure 6. Subgraph of the control flow graph that is ex-
amined by the admission test when trying to remove the
witness on er.

other witnesses through e1 with coinciding execution times.
Let us call these other witnesses a and b, i.e., the coinciding
paths start at a and end at b. e1 cannot be removed as long as
those witnesses exist. Suppose a is removed in a consecutive
step of Algorithm 1 and e1 revisited. All witness-free paths
previously leading to a reach now to e1. If we remove now
e1, a path p that had led to a is now extended with all possible
paths leading from a to b. Since we know that at least two
paths from a to b coincide in time, two of the resulting paths
must coincide as well, and therefore we must not remove
e1. A similar argument can be made for when removing b.
In summary, the admission test has to be done only once
for each witness; a single iteration over all witnesses in the
initial set Ein suffices.

3.2.4 Test for Distinguishable Paths in a Subgraph
Let us now focus on the admission test, which is per-

formed by function isAdmissible in Algorithm 1. The pur-
pose of this test is to check whether the remaining set of
witnesses still fulfills the condition (2) on G.

Since we start with a feasible witness set, the test only
needs to operate on the subgraph SG affected by the witness
er to be removed, i.e., including all vertices and edges that
lay on a witness-free path between witnesses that can reach
er, or that can be reached from er, as illustrated in Fig. 6. In
this example, the dashed paths need to be examined, other
parts of the graph are not affected by er and are therefore
omitted in the figure. As the uniqueness needs to be shown
for each affected witness pair, we first reduce (for conve-
nience) the subgraph SG. To this end, we choose one pair
of witness edges ein,eout and remove all edges and nodes
that are not reachable from ein and cannot reach eout , i.e., we
keep only the bold dashed paths in Fig. 6.

For each choice of ein,eout , all possible witness-free paths
must be distinguishable in execution times for a feasible so-
lution. For paths that do not contain any program loops,
checking (2) is straightforward: the upper and lower range
of a path can be calculated by summing up the costs of all
vertices in the path. However, if a path contains loops, the
number of different possible execution times to assess grows
exponentially, as discussed in Sec. 3.2.2.

Our approach to mitigate this effect is as follows: we de-
rive a necessary condition that needs to be fulfilled for unique
executions times of paths containing loops. Graph structures
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that result from removing a witness and that do not fulfill this
condition can be quickly rejected for admission.
Reasons for Non-unique Paths. For the later discussion,
we distinguish two reasons for non-unique paths:
• Two paths have exactly the same number of occurrences

of each vertex, just in a different order. As a result, the
accumulated execution times on each path are equal and
therefore, the two paths cannot be distinguished. We
say that two paths with the same number of occurrences
of each vertex are equivalent.

• Two paths have different numbers of occurrences of
each vertex, but the difference in (2) is not larger than
δ.

In the following, we derive a condition that is necessary
to exclude the existence of equivalent paths.
Equivalent Paths. The (reduced) control flow graph SG
can first be decomposed into strongly connected components
(SCCs), i.e., into maximal subgraphs where there is a path in
each direction between each pair of vertices of the graph.
This is exemplified in Fig. 7 (a). If each SCC is contracted to
a single vertex, the resulting graph is a directed acyclic graph
(see Fig. 7 (b)). In other words, the program flow follows the
acyclic graph (never returns to previous subgraphs) but may
do loops within each SCC.

The program path through the acyclic graph is unique in
the number of occurrences of each vertex. Therefore, the
only non-uniqueness can come from one of the SCCs.

Let us suppose an SCC contains a vertex v with at least
two outgoing edges (v, i) and (v, j) where b(i)≥ 1 and b( j)≥
1 is satisfied and with b(v)> 1. According to Sec. 3.2.1, b(v)
is an upper bound on the number of times v can be executed.
Then it may be possible that v is visited twice in a program
path: first, the program path follows edge (v, i) and after-
wards it follows edge (v, j). Now, there may exist another
program path where the order of visit is reversed, i.e. at first
(v, j) and then (v, i). This can be seen as follows: The con-
sidered subgraph is an SCC. Therefore, there exists a path
from every vertex to every other vertex and therefore, there
exists paths that connected i as well as j back to vertex v.

The reverse is true as well: if there does not exists such
a vertex v in any SCC, then there are no equivalent paths.
This can be shown as follows: if there exist two equivalent
paths, then there is a first vertex after which the two paths
are different, but vertices are visited equally often. Let us
call this vertex v and the two succeeding vertices i and j.
As both edges can be taken, we have b(i)≥ 1 and b( j)≥ 1.
Clearly, the node v needs to be visited at least twice as the
both vertices i and j are part of both paths (they need to be
visited equally often). Therefore, b(v)> 1 is necessary.

In summary, if an SCC contains a branch v, then under
relatively general conditions (b(i) ≥ 1, b( j) ≥ 1, b(v) > 1)
we cannot exclude the existence of equivalent paths. In other
words, a safe and not too restrictive assumption is that SCCs
of the program graph should contain a single cycle only,
without any internal branches. We use this finding in our
heuristic to early reject the removal of a witness. Strongly
connected components in a graph can be found in linear
time [13].

Path Differences. Now we can address the problem of com-
paring path lengths in SG according to (2). As discussed in
the previous section, we dismiss all subgraphs that contain
SCCs with branches, i.e., the remaining subgraph contains
only SCCs with single loops. For execution time calcula-
tion, we again use the decomposition of the reduced control
flow graph into SCCs and the contraction of each component
into a single vertex.

In terms of accumulated execution times, we have now a
new control flow graph, e.g., as shown in Fig. 7 (c), with the
following properties:
• The new control flow graph has (as before) initial and

final edges ein and eout .

• Each SCC is replaced by an acyclic subgraph with as
many input and output edges as the product of the num-
ber of original inputs and outputs to the SCC. The
acyclic subgraph has no internal edges. The vertex cost
between one pair of input and output edges has two
parts: The additive part t0(v) equals the sum of vertex
costs (execution times) of the original program if the
program path does not contain a cycle; the multiplica-
tive part tc(v) equals the sum of execution times of a
complete cycle execution. In other words, we have

t(v) = t0(v)+n(v) · tc(v)

The factor n(v) determines the number of complete
cycle executions. This number can be bounded from
the corresponding bounds of the original control flow
graph.

• These acyclic subgraphs are connected by the rest of the
control flow graph, i.e. all vertices that do not belong
to a SCC. The vertex costs correspond to the original
execution times of the control flow graph.

In summary, we now have an acyclic control flow graph
G = (V,E,W,T0,Tc,B) where each vertex has a cost of the
form t(v) = t0(v)+n(v) · tc(v) where n(v)≤ b(v).

Now, testing (2) can be done as follows: the acyclic con-
trol flow graph is traversed in topological order. During the

t = [1,2]

t = [3,5]

t = [2,4]

t = [4,5]

Strongly
connected
component

t = [1,3]

ein

eout

(a) Original

t = [1,2]

t = [4,5]Strongly
connected
component

t = [1,3]

ein

eout

(b) Contracted

t0 = [1,2]
tc = [0,0]

t0 = [4,5]
tc = [0,0]t0 = [5,9]

tc = [5,9]
t0 = [2,4]
tc = [5,9]

t0 = [1,3]
tc = [0,0]

ein

eout

(c) Replaced

Figure 7. Example graph with one strongly connected
component (SCC). Contracting the SCC in (a) leads to
(b). In (c), the SCC is replaced by an acyclic subgraph,
consisting of new vertices with additive and a multiplica-
tive execution times t0 and tc.
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traversal, sets of intervals are maintained and updated. At
join nodes, two sets are joined and if two intervals overlap,
paths cannot be distinguished and the traversal can stop. If a
set passes a vertex v, then we replace the set by a new one that
contains for each interval I in the original set the intervals
I + t0(v)+ n(v) · tc(v) for all n(v) ≤ b(v). If an added inter-
val overlaps with an existing one in the new set, the traversal
stops as paths cannot be distinguished anymore.

Finally, we test whether the intervals in the resulting set
(at eout ) are separated by at least δ, i.e., the distance between
the upper bound of any interval and the lower bound of the
subsequent interval is at least δ. If no paths are coinciding in
execution time for any pair of ein,eout in SG, removing that
particular witness from the initial witness set is admissible.
We show in Sec. 5.1 that the off-line computational complex-
ity of the admission test is small for realistic programs.

3.3 Encoding of Witnesses
To instrument a program, we have to define an encod-

ing that maps witness identifiers to GPIO state changes. We
assume to have N pins that we can observe. The number of
witnesses |I| that can occur is |E|−|V |+1 in the case of Ball
and Larus, i.e., there is a witness on every edge in the control
flow graph G but on those that are part of the spanning tree.
In the case where 2N > |I| each witness can be binary en-
coded with at most one state change per pin. Depending on
the processor architecture, this can be managed by a single
instruction if all pins belong to the same port on the micro-
controller, e.g., using XOR <IDValue>, <GPIO port>. For
more witnesses, we need an encoding that can represent wit-
nesses using sequences of GPIO state changes with a min-
imal amount of CPU cycles. We employ two strategies to
achieve this goal: (i) reuse witness identifiers, and (ii) encode
identifiers that are used more often using cheaper codes.
Reusing Witness Identifiers. Witnesses in different control
flow graphs can have the same identifiers, since the blocking
witnesses allow us to unambiguously determine transitions
between control flow graphs. Within a control flow graph,
for every witness, every set of reachable witnesses must have
unique identifiers. This problem can be modeled as finding
a proper vertex coloring in an undirected graph where each
witness is a vertex. For every set of reachable witnesses, we
add edges between all pairs of witnesses in the set. Finding
a minimal number of unique identifiers is equal to finding a
minimal number of colors for the vertex coloring problem.
Identifier Encoding. For the remainder, we assume a hard-
ware platform that supports to set or change the state of all
monitored pins at once. One state change is the smallest
unit in terms of cost, and allows to represent 2N different
codes. Given a set of identifiers m ∈M and an expected oc-
currence probability p(m), our goal is to find an encoding
C(m) that minimizes the total cost R = ∑m p(m) · len(C(m)).
To minimize this cost, we use k-ary Huffman coding [28]
with k = 2N .
Nested Witnesses due to Interrupts. Witnesses might be
encoded using more than one single GPIO state change.
When an interrupt occurs, witnesses emitted within that in-
terrupt handler might separate an ongoing witness in the
interrupted program and therefore alter the observed GPIO

code of that witness. To avoid such ambiguities, we in-
strument every start of an interrupt handler with a globally
unique GPIO code. Whenever a unique code is observed
during trace reconstruction, the parts of the trace belonging
to an interrupt can be safely separated from other parts.
4 Implementation

In this section, we present a tool that implements our in-
strumentation method for MSP430 based platforms. The
MSP430 series is a family of low-power microcontrollers,
featuring a 16-bit RISC CPU [34]. GPIO pins, organized in
ports of 8 bits, are accessed using memory mapped I/O reg-
isters. The main clock of the CPU is sourced either by an ex-
ternal quartz oscillator or by an internal digitally controlled
oscillator (DCO) with RC-type characteristic. The MSP430
architecture has no caches and no branch speculation, which
makes execution timing deterministic. Each instruction takes
a fixed number of CPU cycles to complete, depending on the
addressing mode of the instruction. Sleep states disable one
or several peripherals and clocks to save energy. Any sleep
state disables the CPU clock.

We implement instrumentation and replay function in a
Python based tool, which we also make available for down-
load1. Replay is the process of reconstructing the program
execution based on the recorded events. In the following,
we describe the two functionalities in more detail, and we
discuss selected design decisions.
4.1 Binary Instrumentation

The instrumentation process takes a program binary as
input and automatically adds the necessary instrumentation
code. Instrumentation works on the level of machine code
instructions because our approach needs accurate informa-
tion about execution timing. Instrumenting programs in high
level programming languages is not an option, since the ex-
act realization and timing highly depend on the compiler and
the optimizations performed during compilation.

There are several steps involved in program instrumen-
tation: (i) the program structure is analyzed and a control
flow graph for each function or procedure is extracted. (ii)
We then apply our heuristic algorithm to select edges that
need to be instrumented with a witness. (iii) Instructions that
change GPIO states are inserted into the program.
Program flow analysis. This step extracts the control flow
graph for every function or procedure in the program. Each
instruction of the executable is parsed and grouped into ba-
sic blocks, i.e., instructions that form a continuous pro-
gram flow. To connect basic blocks in the graph, all pos-
sible successors of the block’s last instruction need to be
known. A jump instruction or a conditional branch directly
contains the target address. More complicated are indirect
branches, which often result from C-switch statements. In-
direct branch instructions operate on addresses stored in reg-
isters, and therefore the calculation of the address needs to
be understood for a general solution. However, we find that
a template based approach works well if targeting only one
specific compiler. A template is a set of rules that is applied
to instructions preceding the indirect branch instruction to
find the base address and the size of the jump table involved.

1https://github.com/rolim/msp430-tracing
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Interrupts and sleep states. In low-power applications, mi-
crocontrollers commonly spend most of the time in a sleep
state to preserve power. To properly trace the program execu-
tion, we have to keep track of the power state of the proces-
sor. Sleep states are exited by interrupts. On the other hand,
interrupts might also occur while the processor is active. On
the MSP430, the current low-power mode is configured by
flags of the status register. Before interrupt handler execu-
tion, the status register is pushed onto the stack. Thus, to
track the low-power states of the processor, we insert addi-
tional witnesses at places where the program might enter or
exit a low-power mode, i.e., at the start of an interrupt han-
dler, or at instructions that modify the low-power mode flags
of the status register. A witness at the beginning of an inter-
rupt handler also encodes the last sleep state as stored in the
status register on the stack.
Instrumentation code. Instructions that represent a wit-
ness should be cheap, both in terms of execution time and
size. On the other hand, they must be correctly decodable,
irrespective of the program flow and the current state of the
GPIO pins. We considered two different possibilities to ful-
fill these requirements: (i) Every witness translates into a
single exclusive or operation on the identifier and the current
port state. (ii) Every witness consists of two instructions,
one that resets the state of the GPIO port, and one that sets
the value to the actual identifier of the witness. The first
option requires to restore the status register of the CPU in
case a succeeding instruction is influenced by a status flag
(zero, negative, ...) because the exclusive or affects the sta-
tus register. The second option has no functional impact on
other instructions. We decided to use the first option, since it
has lower overhead, and since we encountered the need for
restoring the status register only very rarely.
Effects of instrumentation. Inserting additional instruc-
tions into an existing program might change addresses of ex-
isting instructions. Therefore, instructions relating to such
addresses (e.g., function calls, branches, ...) need to be
adapted. Some instructions might need to be replaced, e.g.,
relative jump instructions on the MSP430. These instruc-
tions can perform jumps to addresses located within 512
bytes of the jump instruction. Added instrumentation code
might now lead to jumps that exceed this limit, and therefore
require to replace a relative jump with an absolute jump.

Changes in the program alter the execution timing of the
program, and therefore also change the conditions that did
hold during the placement of the witnesses. We resolve this
issue by iterating the instrumentation process as long as there
are no more changes needed. In every iteration, we update
the control flow graphs to reflect the altered timing behav-
ior. We then re-run the witness placement heuristic on the
updated control flow graphs. Now, this could lead to an os-
cillation or even an infinite loop, e.g., if placing an instruc-
tion makes and ambiguous path distinct again. To prevent
this from happening, we only allow each iteration to add ad-
ditional witnesses but not remove old ones.

4.2 Replay
During replay, we translate recorded GPIO events, i.e., tu-

ples (time,pinnumber,pinstate), to program addresses. First,

we group events with the same time. Then, we lookup the re-
sulting witness identifier. By following the path to the next
recorded witness in the control flow graph, we can gradually
reconstruct the control flow during execution. In case there
are multiple possible paths between the current location and
the next witness, we choose the path that has an execution
time closest to the measured execution time. Our heuristic
ensures that this is sufficient to remove path ambiguities.

5 Evaluation
We evaluate the impact of our tracing method on five dif-

ferent applications. All experiments run on FlockLab [21],
a public testbed with 31 nodes, which provides a service to
trace GPIO states. We assess the impact of GPIO tracing
with three increasing levels of information: (i) witness ID
only, (ii) with timestamps of witnesses, and (iii) including
upper bounds of loops. For every setting, we investigate the
impact on program size and runtime overhead. Our experi-
ments reveal the following key findings:
• Instrumentation with knowledge of upper bounds adds

the lowest static memory overhead to the program bi-
nary, on average 31% (6.8kB). Compared to the
witness-only case, upper bounds can reduce the num-
ber of non-blocking witnesses by 67%.

• The runtime overhead in terms of CPU cycles to trace
the entire program flow is between 14% and 21% (19%
average) using upper bounds. This is 13.5% and 38.3%
less than with the baseline approach.

• Programs performed similarly with and without instru-
mentation. Glossy, which relies on exact timing of ac-
tions in order to generate constructive radio interfer-
ence within the network, achieved at least 99.978% data
yield with any of the three instrumentation types.

5.1 Experimental Setup
To show the feasibility and the potential of GPIO tracing,

we selected five example applications that are optimized for
different target scenarios. Apart from the TinyOS Blink ap-
plication, all candidates form a multi-hop network. Multihop
Oscilloscope (MHO), available from the TinyOS repository,
is a general purpose data gathering application. It samples
a sensor value every second and reports these values every
five seconds to a base station. We choose to run this applica-
tion with and without the low-power listening MAC protocol
(LPL). In the LPL configuration, we set the wakeup interval
to 512ms. Dozer [12] is optimized for very low duty cycles
and low data rates, generating a data packet on each node
every 30 seconds. Finally, we include Glossy [14], which
provides a fast and energy efficient flooding architecture. We
use a flooding period of 2 seconds. This selection of example
applications also covers two popular sensor network operat-
ing systems, namely TinyOS and ContikiOS. To illustrate the
complexity level of each program, we list the program size
and number of basic elements (functions, basic blocks and
instructions) of each binary compiled for the TelosB plat-
form in Table 2.

We instrument each application with three different lev-
els of information to assess the benefits of additional infor-
mation with respect to memory overhead and runtime over-
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Table 2. Binary size and number of program elements for applications used in the evaluation.
Application name Operating system Size Functions Basic blocks Instructions
Blink TinyOS 2564 19 259 875
Multihop Oscilloscope TinyOS 24522 175 2728 8329
Multihop Oscilloscope LPL TinyOS 26128 188 2967 8848
Dozer TinyOS 33798 203 3347 11090
Glossy ContikiOS 16128 125 1556 5395

head. First, we rely only on the recorded witness identifiers.
Since this approach does not use any time information, there
must be only one possible program path between two con-
secutive witnesses. This approach is the most expensive in
terms of overhead. Then we make use of witness timestamps.
As explained in Sec. 3.2, by taking execution times into ac-
count, we can remove witnesses from the previous approach,
as long as paths between consecutive witnesses have distin-
guishable path lengths. Based on empirical measurements,
we assume a time inaccuracy of 1%. We assume to have no
information about loop upper bounds (i.e., the upper bound
is infinity), and thus this approach cannot remove witnesses
within loops. The two instrumentation methods so far do not
require any specific runtime information about the program,
and can therefore be applied without any further information
about runtime execution. To further reduce the number of
witnesses and therefore the runtime overhead of our tracing
method, we add information about upper bounds of loops.
For our experiments, we use a measurement based approach
do get upper bounds. More specifically, we profile each ap-
plication and count the maximal number of iterations of each
loop. We then add a margin of 20% and use this value as
upper bound. In the following, we refer to these three dif-
ferent variants as w/o time, time and time & bounds. The
instrumentation process for any of the 15 binaries took less
than 2 minutes each on a standard PC. As instrumentation
adds witnesses at the beginning of interrupt handlers (see
Sec. 4.1), we adapt the time compensation code of Glossy
in one handler by adding a constant value to the timer cap-
ture register2.

5.2 Static Overhead
The number of added witnesses for each instrumented ap-

plication is shown in Table 3. A key figure is the number of
non-blocking witnesses that remain to be instrumented. As
described in Sec. 3, blocking witnesses are required to re-
trace the program flow between functions. Since we need
this property in any of the three instrumentation variants, the
timing aware approaches can only remove non-blocking wit-
nesses. Fig. 8 shows that time analysis cuts the number of
non-blocking witnesses in half. Using loop upper bounds
further reduces the number of witnesses. In the case of Mul-
tihop Oscilloscope LPL, we see a total reduction in non-
blocking witnesses of 67%.

The static overhead in terms of program memory is of
practical importance, since program memory is a scarce re-
source in wireless embedded systems. In Fig. 9, we compare

2This modification can be done in a semi-automatic manner by providing
placeholder variables that are filled with the number of added CPU cycles
during the instrumentation process.
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Figure 8. Number of non-blocking witnesses in each in-
strumented binary (last three columns of Table 3).

the size of the instrumented binary to the original one. We
find that the memory overhead ranges from 23% to 49%.
As expected, having timestamps and upper bounds each re-
duces the size of the instrumented binary. The most efficient
variant (time & bounds) adds a memory overhead of at most
38% for all the investigated examples. While this is not a
negligible amount of memory, it still allows us to fully in-
strument programs that use up to 72% of their total available
flash memory, e.g., 34.7kB on a TelosB node. Our tracing
method does not require additional RAM.
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Figure 9. Memory utilization for original program and
instrumented variants. No additional RAM is needed.

5.3 Runtime Overhead
We use FlockLab’s GPIO tracing service [22, 21] to

record the states of the GPIOs during execution. FlockLab
allows to trace up to 5 GPIO pins on every node. We let ev-
ery combination of application and instrumentation type run
for 30 minutes on 31 TelosB nodes. Then, we replay all the
traces and count the number of CPU cycles spent on emitting
witnesses and the CPU cycles used for original instructions.

The runtime overhead is shown in Fig. 10. The average
overhead per experiment ranges from 14% to 28%. Simi-
larly as for the static overhead, the instrumentation method
using loop upper bounds adds the lowest overhead (14% to
21%). The advantages of the upper bound approach are more
pronounced because removing witnesses in a loop has a big-
ger impact on runtime overhead than on memory overhead.
We also find that the runtime overhead (avg. 19%) is smaller
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Table 3. Number of blocking and non-blocking witnesses used for instrumentation.
Blocking witnesses Non-blocking witnesses

Application name w/o time time time & w/o time time time &
bounds bounds

Blink 70 70 70 76 39 35
Multihop Oscilloscope 916 916 916 409 162 145
Multihop Oscilloscope LPL 1022 1022 1022 412 156 138
Dozer 1113 1113 1113 475 222 214
Glossy 390 390 390 438 258 184

than the program memory overhead (avg. 31%) would sug-
gest. This is mainly due to instrumentation instructions on
the MSP430 being larger than the average, but execution
wise around average. Comparing w/o time to time & bounds,
we see reductions between 13.5% and 38.3%.

Since Glossy requires tight synchronization between con-
current transmitters in order to achieve constructive interfer-
ence [14], we verified the performance of all three Glossy
runs by comparing the performance metrics reliability and
radio duty-cycle to the unmodified program. As shown in
Table 4, all three test runs exhibit a high reliability of at least
99.978% and low radio duty-cycle. In addition, there are
only slight variations between tests.
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Figure 10. Runtime overhead caused by added instruc-
tions. Error bars indicate minimum and maximum.

Table 4. Reliability and radio duty cycle of Glossy.
Instrumentation type Reliability Radio duty-cycle
Unmodified 99.996% 0.57%
w/o time 99.986% 0.60%
Time 99.996% 0.59%
Time & bounds 99.978% 0.59%

These experiments show that full control flow tracing in
a testbed is feasible and adds a relatively low runtime over-
head. Moreover, it is also suitable for tracing time sensitive
applications.
6 Case Study

In the following, we give two examples that show how
program traces can be leveraged to analyze program behav-
ior in wireless embedded systems. We extract and analyze
code coverage, and we use traces to inspect timing behavior.
6.1 Code Coverage

We examine code coverage statistics that can be directly
extracted from execution traces. Code coverage describes the
amount of code that has been executed during runtime. It is
used to measure the amount of program code that is covered
by a set of tests. Test suites generally aim at maximizing

their code coverage [26]. We calculate the code coverage
as the percentage of distinct executed basic blocks during a
program run.

Nodes with similar code coverage might take on similar
roles in a network, e.g., acting as sink or leaf node, or re-
laying messages. Examining the diversity of code coverage
might help to understand these systems better, and to tailor
test cases to specific scenarios.

In the following, we analyze the traces obtained in Sec. 5
and calculate the overall code coverage and the distance of
code coverage between nodes. We define the distance D be-
tween two sets of covered basic blocks Γi,Γ j as the Ham-
ming distance between the sets, i.e.,

D(Γi,Γ j) =
∣∣Γi∪Γ j

∣∣− ∣∣Γi∩Γ j
∣∣ .

Overall, we find that the test runs cover 62% to 67% of
all basic blocks in the program. Specific numbers are given
in Table 5. Interestingly, even a simple program like Blink
does only cover two third of the entire program. Most of
the uncovered parts of Blink are related to interrupt handlers
(Timer A) that are never used during program execution, but
still included in the binary. Pointers to uncovered program
parts can help the developer to eliminate unused code in or-
der to save on scarce program memory.

Table 5. Code coverage of example applications.
Application name Code coverage Basic blocks
Blink 66% 171
Multihop Oscilloscope 65% 1761
Multihop Oscilloscope LPL 67% 1997
Dozer 62% 2079
Glossy 65% 1014

To analyze the variability in code coverage across the net-
work, we calculate two coverage metrics from the traces: the
average distance between sink node and the rest of the net-
work, and the average pairwise distance between all nodes
but the sink node. These metrics are shown in Fig. 11. Gen-
erally, a sink node executes clearly a different set of basic
blocks than the rest of the network. For Blink, all nodes
have exactly the same code coverage, as would be expected,
since the program runs independently on every single node.
In the case of multi-hop applications, there seem to be two
distinct cases that differ to each other by the amount of vari-
ation between the non-sink nodes. Applications running on
top of topology based network protocols (MHO, MHO LPL,
Dozer) exhibit larger variations than approaches based on
network flooding (Glossy). In the latter case, coverage dif-
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fers only within 24 basic blocks among all non-sink nodes.
This can be explained as follows: in topology based ap-
proaches, the executed code paths depend on the node’s po-
sition in the topology, e.g., compared to a node close to the
sink, a leaf node does not need to forward any messages. In
Glossy, all nodes participate similarly in every flood, irre-
spective of their position in the network.
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Figure 11. Average pairwise distance of code coverage
between nodes in the experiment. Error bars indicate
minimum and maximum.

Control flow tracing allows to extract useful aggregated
information from program executions. Code coverage can
be used to reason about program behavior in a network, or
to find potentially unnecessary code, thus helping to reduce
program size.
6.2 Inspecting Time Behavior

Erroneous or unwanted timing in embedded systems can
lead to malfunction or degraded performance (e.g., higher
energy usage, or lower throughput). Runtime traces can give
pointers to problematic parts of a program.

In this section, we analyze the timing within a part of the
boot sequence on a TelosB node. During our experiments for
the evaluation of this paper we realized that boot time can
vary by several seconds among nodes when running Con-
tikiOS. Traces show that most of the time is used for cali-
brating the digitally controlled oscillator (DCO). This DCO
has to be configured by software to run at the desired target
frequency, 4MHz in our case. The actual frequency of the
DCO is measured using the low frequency crystal oscillator
on the TelosB as reference.

Fig. 12 shows the actual DCO frequency during the cal-
ibration process on TinyOS and ContikiOS. TinyOS uses a
binary search, achieving calibration within tens of millisec-
onds, while ContikiOS performs a linear sweep (steps are
caused by overlapping frequency ranges within the sweep).
A code excerpt of the latter is provided in Listing 13. Apart
from the longer convergence time during the sweep, the cal-
ibration routine of ContikiOS exhibits a suspicious tail after
reaching the target frequency. This tail turns out to be the
main source of boot time variability among nodes. By in-
specting the traces, we find that this period of almost con-
stant frequency is caused by the calibration routine oscillat-
ing around the target frequency. According to Listing 1, line
103, the calibration ends if the measured number of clock
cycles exactly matches DELTA, i.e., the number of DCO cy-
cles during one reference clock cycle at the target frequency.
Due to the granularity of frequency control, it might take a

3https://github.com/contiki-os/contiki, January 8, 2017

long time until this condition is met, even though the actual
frequency cannot be tuned closer to the target frequency. To
remove this random behavior, we suggest to add a test for os-
cillation, or to replace the calibration routine with a similar
approach as in TinyOS.
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Figure 12. CPU speed profile at boot time for two differ-
ent clock calibration algorithms.

Listing 1. Initial DCO calibration in ContikiOS.
95 while(1) {
96
97 while((CCTL2 & CCIFG) != CCIFG);
98 CCTL2 &= ˜CCIFG;
99 compare = CCR2;

100 compare = compare - oldcapture;
101 oldcapture = CCR2;
102
103 if(DELTA == compare) {
104 break;
105 } else if(DELTA < compare) {
106 DCOCTL --;
107 if(DCOCTL == 0xFF) {
108 BCSCTL1 --;
109 }
110 } else {
111 DCOCTL++;
112 if(DCOCTL == 0x00) {
113 BCSCTL1++;
114 }
115
116 }
117 }

This example shows that the increased observability pro-
vided by control flow traces can greatly facilitate the analysis
of embedded systems. Time behavior can be analyzed in de-
tail without tailoring an instrumentation strategy to a specific
goal, e.g., using counter registers and printf statements.
7 Conclusions and Future Work

We have presented a novel testbed based method that al-
lows to completely trace the program flow of wireless em-
bedded systems. By inserting instructions that encode wit-
nesses of the program flow using GPIO state changes, the
execution of a program can be observed down to instruction
level. To this end, we designed a new algorithm that uses
time information to reduce runtime overhead of instrumen-
tation substantially, while still being able to uniquely deter-
mine the executed program path. Our experimental evalua-
tion showed that our approach has an average runtime over-
head of 19%. Compared to an approach without time analy-
sis, using time information reduces the runtime overhead by
up to 38.3%. This makes our approach also suitable to trace
timing sensitive applications.

By enabling program tracing on a wide range of wireless
embedded systems, we provide a tool that can serve as the
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starting point for new debugging methods, automated pro-
gram verification or optimization.

Although we implemented tracing for the MSP430 archi-
tecture, our approach is more general, and we want to see
it also ported to other architectures in the future. We also
see the need for tools that facilitate browsing and inspection
of traces, especially for traces recorded from distributed sys-
tems and networks.
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