
Paxos Made Wireless: Consensus in the Air

Valentin Poirot†, Beshr Al Nahas†, Olaf Landsiedel‡†
† Chalmers University of Technology, Sweden

‡ Kiel University, Germany

{poirotv, beshr}@chalmers.se, ol@informatik.uni-kiel.de

Abstract
Many applications in low-power wireless networks re-

quire complex coordination between their members. Swarms
of robots or sensors and actuators in industrial closed-loop
control need to coordinate within short periods of time to ex-
ecute tasks. Failing to agree on a common decision can cause
substantial consequences, like system failures and threats to
human life. Such applications require consensus algorithms
to enable coordination. While consensus has been studied
for wired networks decades ago, with, for example, Paxos
and Raft, it remains an open problem in multi-hop low-power
wireless networks due to the limited resources available and
the high cost of established solutions.

This paper presents Wireless Paxos, a fault-tolerant,
network-wide consensus primitive for low-power wireless
networks. It is a new flavor of Paxos, the most-used con-
sensus protocol today, and is specifically designed to tackle
the challenges of low-power wireless networks. By building
on top of concurrent transmissions, it provides low-latency,
high reliability, and guarantees on the consensus. Our results
show that Wireless Paxos requires only 289 ms to complete
a consensus between 188 nodes in testbed experiments. Fur-
thermore, we show that Wireless Paxos stays consistent even
when injecting controlled failures.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Wire-

less Communication; C.2.2 [Computer-Communication
Networks]: Network Protocols

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Consensus, Paxos, Multi-Paxos, Concurrent transmis-

sions, Wireless sensor networks, IoT

1 Introduction
Context. Many applications in low-power wireless net-

works need to reach an agreement among themselves before
an action can be performed. Mission critical systems are
one typical example of such applications, since conflicting
commands can have important and possibly harmful conse-
quences. For instance, a swarm of Unmanned Aerial Vehi-
cles (UAVs) must agree on a common destination [33]; while
centrally computed transmission schedules in wireless sen-
sor networks (WSNs) have to be agreed on and distributed
by the nodes in the network [37].

However, not all faults can be avoided in wireless net-
works. Message loss and devices running out of battery are
common failures seen in deployments. Thus, an agreement
ensures that at most one action is chosen, even if some de-
vices cannot participate. UAVs operating on limited batteries
must agree on a common trajectory, even if some UAV ran
out of power along the way; and an updated schedule must
be agreed upon and used in a WSN, even if some nodes dis-
appeared since the last agreement.

Efficient and highly reliable dissemination protocols have
been proposed in the literature [12, 17]. However, they do
not provide the same guarantees ensured by an agreement.
A Glossy initiator cannot detect network segmentation, for
instance, and would be unaware that its command was re-
ceived by a small subset of the network only. In a swarm of
UAVs, it is preferable that as many drones as possible con-
tinue on their agreed trajectory, rather than only the few that
managed to receive the disseminated command. Reaching a
consensus is therefore primordial to ensure the correct and
optimal behavior of such applications.

Consensus refers to the process of reaching an agreement.
A consensus is achieved once participants agree on a single,
common decision, from a set of initial values. Consensus is
challenging in the presence of failures (node crashes, mes-
sage losses, network partitions, etc.). It is even proven that
consensus is impossible in a fully asynchronous setting [18],
where one node might never be able to communicate.

Many solutions to the consensus problem have been pro-
posed in the literature [24, 32, 35]. Paxos was one of the
first protocols to provide consensus [24, 25]. It is (non-
Byzantine) fault-tolerant and proven to be correct: Paxos
will lead to a correct consensus as long as a majority of nodes
are participating. Due to the properties of Paxos, all nodes
will eventually learn the correct value as long as a majorityInternational Conference on Embedded Wireless

Systems and Networks (EWSN) 2019
25–27 February, Beijing, China
© 2019 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-3-8

1

accepted the decision. Paxos is often used in an extended
and optimized form, Multi-Paxos [24], which allows nodes
to agree on a continuous stream of values and enables state
machine replication. For example, UAVs can continuously
coordinate their next destination with Multi-Paxos.

Today, Paxos and Multi-Paxos have become the default
protocols to ensure consistent data replication within data-
centers. They are used in many modern deployments, for
instance Google’s Chubby locking mechanism [8] and their
globally distributed database Spanner [10], Microsoft’s data-
center management Autopilot [21], and IBM’s data-store
Spinnaker [38].

Challenges. The complexity of Paxos and its many re-
quired interactions pose key challenges in low-power wire-
less networks. Devices in WSNs have strong resource-
constraints in terms of bandwidth, energy, and memory. Ra-
dios are, for example, commonly duty-cycled to save energy
[6, 13, 36]. In contrast, Paxos requires many message ex-
changes and a high bandwidth to reach consensus.

In addition, links are highly dynamic and unreliable in
low-power wireless communication [40]. Paxos is resilient
to these network faults by design, but many of its implemen-
tations use end-to-end routing, which induces an overhead to
the consensus. Paxos has been initially designed for wired
networks, and is therefore heavily influenced by its unicast
structure. Later work shows that Paxos can be partially exe-
cuted with multicast [5], or by introducing an additional log-
ical ring to reduce communications [31]. However, these ap-
proaches rely on unicast for parts of the algorithm.

In contrast, low-power wireless networks are broadcast-
oriented networks where each transmission can be received
by all neighboring nodes. Executing unicast-based schemes
in wireless networks usually induces higher costs, especially
in multi-hop networks. Moreover, multi-hop networks also
provide opportunities for data-aggregation and computation
of intermediate results, which are not part of Paxos’ design
rationale.

Approach. In this paper, we bring fault-tolerant consen-
sus to low-power wireless networks. We propose Wireless
Paxos, a new flavor of Paxos fitted to the characteristics of
low-power wireless networking: we show that Paxos can be
transformed from a unicast (or multicast) scheme to a many-
to-many scheme, which can be efficiently executed in low-
power wireless networks. We co-design the consensus al-
gorithm along with the lower layers of the network stack to
greatly improve the latency of consensus and have a tighter
control on the transmission policy. The overall result is a
broadcast-driven consensus primitive using in-network pro-
cessing to compute intermediate results in Paxos. Our solu-
tion builds on top of Synchrotron [2], a kernel for concur-
rent transmissions inspired by Chaos [28], providing a basis
for highly reliable and low-latency networking in low-power
wireless with support for in-network processing.

Contributions. This paper makes the following contribu-
tions:
• By distributing parts of the proposer logic, we show that

Paxos can be expressed as a many-to-many communi-
cation scheme, rather than a partially multicast scheme;

• We present Wireless Paxos, a new flavor of Paxos
specifically designed to address the challenges of low-
power wireless networks, and Wireless Multi-Paxos, an
optimized extension of Wireless Paxos for continuous
streams of agreed values for constrained devices;

• Both primitives are ready to use by any application as
an open-source library on GitHub1;

• We implement and evaluate our contributions on two
testbeds, composed of 27 and 188 nodes, and compare
our results to solutions from the literature.

The remainder of the paper is organized as follows. Sec. 2
introduces consensus, Paxos, and concurrent transmissions.
Sec. 3 gives an overview of our design. Next, Sec. 4 dives
into Wireless Paxos and Sec. 5 evaluates our contributions.
We discuss related work in Sec. 6 and conclude in Sec. 7.

2 Background
This section introduces the necessary background on con-

sensus and concurrent transmissions. We begin with an
overview of consensus. Then, we present Paxos and Multi-
Paxos. Finally, we introduce concurrent transmissions and
Synchrotron.

2.1 Agreement and Consensus
In distributed systems, a consensus refers to the problem

of reaching agreement among a set of participants. A con-
sensus is complete if, in the end, nodes agree on the same
decision. To be correct, a consensus algorithm must ful-
fill certain properties: the final value must be valid, i.e., it
was proposed at the beginning of the algorithm (Validity);
each node must eventually make a decision (Termination);
and at most one value can be agreed upon, i.e., the result
of the agreement must be consistent among the participants
(Agreement) [11].

Dissemination is no consensus. Dissemination allows a
node to share a value with the entire network, often (but not
always) in a best-effort manner. As such, dissemination does
not – and is not meant to – solve consensus. For example,
Glossy [17] provides high reliability, and a unique value is
present if at most one flood initiator is in the system. How-
ever, even if a node missing a value is aware of the failed
flood, it will never be able to recover the correct command.

2 and 3-Phase Commit. Common algorithms for agree-
ment (but not consensus) are 2-Phase Commit (2PC) and
3-Phase Commit (3PC) [19, 39]. Both algorithms are used
to solve the problem of commit, i.e., whether a transaction
should be executed by all nodes, or none. 2PC works by
first requesting and collecting votes from all nodes in the
network, and then disseminating the result of the decision;
while 3PC adds an intermediary phase to dissociate the de-
cision from the commit. Both protocols handle failures by
aborting or blocking, i.e., by delaying the decision to main-
tain consistency. However, 3PC might lead to inconsisten-
cies.

Fault-tolerant consensus. Paxos provides consensus.
While many values can be initially proposed, it ensures that
at most one value is chosen. Eventually, all nodes will learn

1Available at: https://www.github.com/iot-chalmers/wireless-paxos

2

Pr
op

os
er

Ac
ce

pt
or

s

Prepare Phase Accept Phase

1.b
.1.a. 2.a. 2.b
.

1.a.
Prepare(n=2)

1.b.
Prepared(aP=1, aV=5)

2.a.
Accept(n=2,V=5)

2.b.
Accepted(minP=2)

Value⃪ 10
Proposal ⃪ n = 2 Value ⃪ 5

minP ⃪ n = 2
aP ⃪ n = 2

aV ⃪ V = 5

Value = 5

"#$%&#' > 50% "#$%&#' > 50%

2.c.

Value = 5

Value = 5

Value = 5Value ⃪ ∅

Value ⃪ ∅

Value ⃪ ∅

Value ⃪ 5

Figure 1. Executing Paxos: a proposer wants to propose
the value V=10 to four acceptors. It sends a Prepare re-
quest to all acceptors (1.a) with proposal number n=2.
An acceptor replies with a Prepared message (1.b) with
the most recently accepted proposal, here proposal aP=1
with value aV=5. Once a majority of replies are received
by the proposer, it adopts the highest value received, and
sends an Accept request (2.a). Upon reception, an accep-
tor accepts the value (2.b) and replies with an Accepted
message and the highest proposal received so far. After a
majority of Accept messages, the value is chosen.

the decision if progress is not impeded. To do so, Paxos re-
lies on a majority of responses to make the decision, rather
than from the entire network, thus handling (non-Byzantine)
failures (e.g., message losses, network segmentation, node
crashes).

2.2 The Paxos Basics
Paxos is a fault-tolerant protocol for consensus. It as-

sumes an asynchronous, non-Byzantine system with crash-
recovery, i.e., it handles both process crash and recovery (a
persistent storage is needed), but not misbehaving nodes or
transient faults; delayed or dropped messages, but not cor-
rupted messages; and network segmentation. The protocol
guarantees that, if a majority of nodes runs for long enough
without failures, all running processes will agree on the same
proposed value. For example, the value can be the destina-
tion point for UAVs, or the network configuration in WSNs.

Roles. A node can act as three different roles: Proposer,
Acceptor, and Learner. Nodes can implement more than one
role. Proposers propose a value to agree on and act as co-
ordinators for the protocol’s execution. Acceptors, unlike in
2PC, don’t “vote”, but act, in a very informal manner, as the
system’s “fault-tolerant memory”: they reply to proposers
requests by accepting proposals. Learners do not participate
in the consensus: they only learn which value has been cho-
sen by the acceptors once a consensus is met. Unlike 2PC
and 3PC, where at most one coordinator must be present,
Paxos can tolerate the presence of multiple proposers, at the
cost of impeding the progress of the agreement.

Execution. The protocol consists of two phases: the Pre-
pare phase and the Accept phase, as depicted in Fig. 1. The
protocol is executed as follows:

1. Prepare Phase
a. Any proposer starts the protocol by choosing a value V

to agree upon and a unique proposal number n (i.e., no

other proposer can choose the same proposal number
n). A Prepare(n) request is sent to every acceptor.

b. Upon reception of a Prepare(n) request, an acceptor
will save the proposal number n if and only if it has
never heard any higher proposal number minProposal
before; i.e., if n > minProposal, then minProposal ←
n. The acceptor only replies to the request if the prece-
dent condition is met, meaning that the node is promis-
ing not to reply to any request with a lower proposal
number anymore. The acceptor returns both the last
proposal accepted by that process, noted acceptedPro-
posal, if any has been accepted so far, and the corre-
sponding value, noted acceptedValue.

2. Accept Phase
a. Upon hearing from a majority of acceptors, the pro-

poser adopts the value with the highest proposal num-
ber, such as V ← acceptedValue, if any has been re-
ceived. This condition ensures that at most one value
can be chosen by the system. The proposer switches to
the Accept phase and sends an Accept(n,V) request to
all acceptors.

b. Upon receiving an Accept(n,V), an acceptor accepts
the value V if and only if the proposal number n is
higher or equal to the proposal number the process
has prepared for, namely minProposal. If the con-
dition is true, the acceptor saves the proposal num-
ber n as its highest proposal number heard and as its
accepted proposal, and the value V as its accepted
value, i.e., if n≥minProposal, then minProposal← n,
acceptedProposal ← n and acceptedValue← V . Re-
gardless of the result of the condition, the acceptor
replies to the request with the highest proposal heard
(minProposal).

c. Upon receiving at least one reply with minProposal >
n, the proposer knows that its value has been rejected.
This also means at least one other proposer is present,
and the process can either restart the protocol with a
higher proposal number n to compete or let the other
proposer win. If the proposer received a majority of
replies and no rejection, the value is chosen.

The proposer can therefore inform the learners that a
value has been chosen by the consensus algorithm. Using
minProposal ensures that only the most recent proposal can
be accepted and the data returned at step 1.b. ensures that at
most one value can be chosen.

2.3 Multi-Paxos
Using the protocol described above leads to the agreement

and dissemination of a single value. Due to the properties of
the protocol, any additional execution will lead to the same
value being adopted. Being able to agree on a sequence of
values is a desirable property that Paxos, in its simple form,
cannot satisfy. We can, however, run several rounds of Paxos
to achieve this result. A multi-round version of Paxos is
called Multi-Paxos. More importantly, Multi-Paxos allows
state machine replication, i.e., replicating operations across
processes such as all replicas are identical. For example, the

3

Figure 2. Synchrotron Overview: Synchrotron schedules
flooding rounds for network-wide dissemination, collec-
tion or aggregation, as requested by the application. A
round is composed of consecutive slots, during which a
node can either transmit, receive, or sleep, and processes
the data following a per-application logic.

stream of values can represent intermediary waypoints to-
wards the final destination for UAVs, or the evolution of the
network configuration over time for WSNs. For details on
Multi-Paxos, we refer the reader to the original paper [24].

Executing multiple rounds. A Paxos execution is now
identified by its round number. Many rounds can be executed
simultaneously or sequentially. In the former case, messages
of multiple rounds can be merged into one unique message
in order to save network resources.

Using a unique proposer. In many applications, nodes
are stable enough to keep a unique proposer for a relatively
long period of time. In doing so, the Paxos execution can
be simplified to its sole Accept phase, the Prepare phase be-
ing used only to prepare acceptors to listen to that specific
proposer. The Prepare phase is executed at the beginning of
Multi-Paxos or after a crash of the proposer, and successive
rounds execute only the Accept phase for value adoption.
The protocol does not break in the presence of multiple pro-
posers since acceptors will only accept the highest proposal
and inform lower proposals of their rejection.

Executing Multi-Paxos. Fig. 1 shows the execution of
Paxos. With Multi-Paxos, the Prepare phase (blue) is exe-
cuted once at the beginning, and is followed by many Accept
phases (orange), until the proposer fails.
2.4 Synchrotron

Due to the broadcast nature of wireless communications,
concurrent transmissions of nearby nodes inherently inter-
fere with each other. However, when such transmissions
are precisely timed, one of them can be received, nonethe-
less. We briefly introduce the concept of capture effect, and
present Synchrotron, the communication primitive used in
this work.

Capture effect. Nodes overhearing concurrent transmis-
sions of different data can receive the strongest signal under
certain conditions; this is known as the capture effect [29].
To achieve capture at the receiver with IEEE 802.15.4 radios,
the strongest signal must arrive no later than 160 µs after the
first signal and be 3 dBm stronger than the sum of all other
signals [14].

Synchrotron. Agreement in the Air (A2) [2] extends the
concepts of Chaos, a primitive for all-to-all aggregation [28],
to network-wide agreement. A2 introduces Synchrotron, a

new transmission kernel using high-precision synchroniza-
tion. Like Chaos, Synchrotron operates periodically within
rounds, which we refer to as “flooding” rounds to distinguish
from Paxos rounds. A (flooding) round is composed of slots,
in which nodes concurrently transmit different data, while
the reception relies on the capture effect. In-network pro-
cessing is applied after a successful reception and the result
of the computation is then transmitted during the following
slot, until all progress flags are set, denoting the participa-
tion of the different nodes. Fig. 2 presents an overview of
Synchrotron’s inner working.

Our solution reuses the Synchrotron layer of A2, and pro-
vides fault-tolerant consensus with Paxos, while A2 provides
agreement with 2&3PC.

3 Design Rationale
In this section, we discuss why Paxos is too expensive

for low-power wireless networks. We then observe that, in
fact, Paxos does not require unicast communications but can
be represented as a many-to-many scheme, which makes it
suitable for low-power wireless networks. Finally, we ex-
plain how the broadcast-oriented wireless medium provides
opportunities to develop an efficient and low-latency version
of Paxos.
3.1 Cost of Paxos

The goal of Paxos is to provide a solution to the consensus
problem that is resilient against both node failures and net-
work faults. It does so by relying on the responses of a ma-
jority of nodes only, and by providing semantics that force
all nodes to agree on the exact same decision. It is proven
to be correct and has become one of the default protocols for
consistent data replication within data-centers.

Paxos is an expensive protocol to run, especially in
resource-constrained wireless networks. To achieve consen-
sus, Paxos requires 2N+2 messages, N being the number of
nodes. For example, the public and multi-hop deployment of
Euratech [1] is composed of 188 nodes. Paxos would there-
fore need to transmit 378 messages to achieve a consensus,
usually by relying on end-to-end routing.

While data-centers networks can easily sustain this cost,
it becomes impractical in low-power wireless networks with
strong resource constraints, as bandwidth and memory are
limited, and nodes must keep their duty cycle to a minimum
to save energy.
3.2 Paxos Beyond Unicast?

We observe that, indeed, unicasts are not needed when
Paxos is executed outside of wired networks.

Paxos with multicast. A phase of Paxos can be divided
into two steps: a proposer sharing its request with accep-
tors, and acceptors responding to the proposer. The first step
can be assimilated to a broadcast, or a dissemination. Using
unicast to disseminate a request is expensive, and several ap-
proaches use multicast communication instead (e.g., [5, 31]).

The second step can be assimilated to a collection, where
each response might be different. Multicast cannot be used
here, as Paxos requires many acceptors to communicate to-
wards one proposer. To solve this, Ring Paxos [31] builds
a logical ring composed of acceptors. An accept response
traverses the ring if no higher proposal is present, and the

4

proposal is chosen once a response traversed back to the pro-
poser. By doing so, Ring Paxos minimizes the number of
unicasts needed, but heavily relies on a stable topology.

Many-to-many. We make the observation that the ma-
jority of acceptors does not need to be statically defined in
advance (e.g., by constructing a ring), but instead can be
composed on the fly. By exploiting the broadcast nature
of the wireless medium, acceptors (locally) broadcast their
response, and aggregate responses heard from their neigh-
bors. Eventually, aggregation leads to a majority of re-
sponses combined. Additionally, we explain in §4.1 that a
proposer is not dependent on each response individually, but
rather on the application of the maximum function over those
responses. We can therefore distribute this logic to all accep-
tors, thus completely removing the need for unicast.

The execution of Paxos therefore becomes a disseminate-
and-aggregate scheme (many-to-many), which ideally maps
to the concept of Chaos [28]. Fig. 3 shows how an exe-
cution of Wireless Paxos looks like when using concurrent
transmissions and an aggregation function, in contrast to the
traditional execution of Paxos (Fig. 1). In conclusion, it is
possible to express Paxos as a many-to-many scheme, which
can be efficiently executed in low-power wireless networks.
3.3 Basic Idea: Wireless Paxos

Based on §3.2, we have a mapping between Paxos and
Chaos, a protocol for many-to-many communication that is
highly reliable and low-latency. Therefore, it is possible to
design an efficient version of Paxos for low-power wireless
networks. We co-design Paxos with the lower layers of the
network stack to provide network-wide consensus at low-
latency. Specifically, we base the design of Wireless Paxos
on three principles:
• Broadcast-Oriented Communication: We take ad-

vantage of the broadcast properties of the wireless
medium to disseminate requests and collect responses
efficiently from all nodes.

• Concurrent Transmissions: Like Chaos and A2, we
build on top of concurrent transmissions to provide low-
latency and high reliability.

• Local Computing and Aggregation: We distribute the
decision logic of the proposer to all nodes through an
aggregation function to convert Paxos to a many-to-
many scheme.

4 Designing Wireless Paxos
In this section, we dive deep into the design of Wireless

Paxos. We begin by breaking down our solution. Next, we
extend our concepts to its Wireless Multi-Paxos counter-part.
Finally, we explain key mechanisms of our work.
4.1 Wireless Paxos

We present the design of Wireless Paxos, its phases and
the effect of flooding on the protocol.

Failure model. Wireless Paxos uses a partially-
synchronous communication-model and a non-Byzantine
failure-model with crash recovery (see §2.2). Partial syn-
chrony is given by the use of Synchrotron.

Flooding rounds and slots. As Wireless Paxos builds
on Synchrotron, it follows a similar nomenclature, as de-

Pr
op

os
er

Ac
ce

pt
or

s

Prepare Phase Accept Phase
Value⃪ V = 10
Proposal ⃪ n = 2

Value ⃪ aV = 5

minP ⃪ n = 2

"#$%&#' > 50% "#$%&#' > 50%

Value ⃪ ∅

Value ⃪ ∅

Value ⃪ 5

aP ⃪ n = 2
aV ⃪ V = 5

Value = 5

Value = 5

Value = 5

Value = 5

Figure 3. Executing Wireless Paxos: the proposer broad-
casts a Prepare request. Upon reception, acceptors add
their response to the message and retransmit it concur-
rently. Once the proposer receives a majority of partici-
pation, it switches the phase and sends an Accept request.
Messages are propagated in the network and the value is
adopted.

picted in Fig. 2. Wireless Paxos is executed within “flood-
ing” rounds. A round is divided into slots. At each slot, a
node either transmits, tries to receive a message, or sleeps.
The node then has time for computation before the next slot
starts.

Prepare phase. In the original protocol, a proposer
broadcasts its proposal number to a majority of acceptors,
which reply with their accepted proposal and value if any.
The proposer then selects the result with the highest proposal
number and reuses the value associated.

In Wireless Paxos, the proposer starts to disseminate a
prepare request with its proposal number and two additional
fields for the acceptors to fill in. Upon reception, an accep-
tor applies the maximum function between its accepted pro-
posal and the one received. If the local variable is higher,
it replaces both the proposal and the value by the ones in
memory. In addition, an acceptor always indicates its partic-
ipation to the message by setting a corresponding bit in the
flag field of Synchrotron.

The phase finishes as soon as the proposer receives back
its proposal with at least more than half of the flags set. Ap-
plying locally the maximum function will always lead to the
highest proposal number of the majority because the maxi-
mum is a commutative and idempotent function.

Accept phase. We follow a similar principle for the Ac-
cept phase. In the original protocol, the proposer broadcasts
the value to agree on, as well as its proposal number. The ac-
ceptors reply with the highest proposal they prepared for. If
the proposer receives a reply with any proposal higher than
its own, the proposal is rejected.

In our implementation, the proposer broadcasts its pro-
posal number, the value to agree on and an additional empty
field for the responses. Upon reception, an acceptor returns
the highest proposal it heard of. The proposer can there-
fore learn if it lost the consensus, i.e., there is a proposal
higher than its own, or that the value was chosen once that
a majority participated in the agreement. Again, we use the
maximum function here. While it is not mandatory for the
proposer to learn which proposal is the highest, this informa-

5

-X - - nP ∅ ∅

XX - - nP V m

XX - - nP V m

XX X - nP V m

XX XX nP V m

XX X - nP V m

-X - - nA V ∅

XX XX nP V m

XX - - nA V n

XX - - nA V n

XX X - nA V n

XX X - nA V n

XX XX nA V n

-X - - nP ∅ ∅

XX - - nP V m

XX X - nP V m

XX - - nP V m

XX X - nP V m

XX XX nP V m

-X - - nA V ∅

XX XX nP V m

XX - - nA V n

XX - - nA V n

XX X - nA V n

XX X - nA V n

XX X - nA V n

XX XX nA V n

XX X - nP V m

TX Success Prepare Phase Transmission Reception

X Participation - No Participation

Accept PhaseTX Failure

nP/A V/∅ n/∅ Phase (Prepare / Accept) | Proposal number | Value (V / empty) | Accepted proposal (Prepare phase) / Minimum proposal (Accepted phase)

A

B

C

D

Slot 1
A wants to propose the

value W, it starts a
Prepare phase with the

proposal number n

Slot 2
B receives the request,
it previously accepted
proposal m (m<n) with

value V, and indicates it
in the message

Slot 3
C has never accepted
any proposal before, it

prepares for n and
retransmits the

message

Slot 4
A learns that a majority

of nodes have
participated, it adopts V

as its value and
switches to the Accept

phase

Slot 5
A sends the Accept

request with proposal
number n and value V

Slot 6
B has been preparing
for a proposal ≥ n, it
accepts the proposal
and indicates n as its

minProposal

Slot 7
C accepts the proposal,
saves n as its minimum

proposal and its
accepted proposal, and
V as its accepted value

Slot 8
A learns that a majority
of node have accepted
the proposal, the value

is chosen and the
protocol terminates

Figure 4. Wireless Paxos in action: all nodes act as an acceptor and node A acts additionally as a proposer. Node A
wants an agreement on value W. It initiates at slot 1 a Prepare phase with proposal number n. The value and proposal
fields are left empty. At slot 2, B informs the network that it has previously accepted value V with proposal number m.
At slot 5, A learns that a majority of nodes have participated, it adopts value V as its own and switches to Accept phase
in slot 6. At slot 7, B informs that the highest proposal it prepared for is n, and accepts the value V. At slot 8, A learns
that a majority of nodes have accepted the value since no higher proposal than n was reported, the value V is therefore
chosen by the network. RX failures happen due to concurrent transmissions. Transmissions continue afterwards until
all nodes receive all the flags set.

tion can be used in the case of competition between multiple
proposers.

Optional dissemination. Paxos guarantees that a major-
ity of nodes, but not all, are aware of a value being proposed
(but not chosen). It also guarantees that no other value can be
shared in the network afterwards. The proposer must contact
the learners to disseminate the final decision. Since our de-
sign is based on flooding, Wireless Paxos provides a built-in
dissemination of the decision.

Any node receiving an Accept phase with a majority of
participation and no higher proposal included knows that the
value is chosen, and can learn this value as the final decision.
In addition, the network-wide flooding of Synchrotron will
force all nodes available to hear about the decision, therefore
providing a network-wide dissemination of the result with
high probability.

A typical execution. Fig. 4 represents an execution of the
Paxos primitive with four nodes. All nodes act as acceptors
while A is the only node with a proposer behavior. A starts
the flooding round with the objective of agreeing on value K.
However, node B has accepted a proposal with value V in the
past. This example shows how Paxos avoids inconsistencies
by adopting previously accepted values.

4.2 Wireless Multi-Paxos
Next, we design a primitive that provides the functional-

ity of Multi-Paxos for agreement on a continuous stream of
values and state machine replication. The optimization of
Multi-Paxos over Paxos results in a lower duty-cycle, as we
now only execute the Accept phase most of the time. We
highlight selected mechanisms of Wireless Multi-Paxos.

Bounded memory. The original Multi-Paxos specifica-
tion requires both unbounded memory and message size.
Like other implementations, we relax those requirements and
limit the memory space available. A memory buffer, or log,

is used to save the last values agreed upon, with a predefined
log size. A message length is fixed to accommodate multiple
values in one flooding round. A large log size allows nodes
to recover from past failures.

Multi-Paxos allows multiple (Paxos) rounds to be exe-
cuted at once, by aggregating all the requests into one mes-
sage. Our design also allows to agree on multiple values at
once, but requires that those rounds are consecutive in order
to reduce the amount of data transmitted (see §2.3).

Prepare-phase specifics. Multi-Paxos requires proposers
to learn the outcome of all previous rounds since the start of
the system. The goal is to avoid inconsistencies and allow
nodes with missing values to recover, or insert a special no-
operation token to maintain state machine replication if no
value was chosen. Wireless Multi-Paxos provides the same
behavior. Proposers must learn all previous values in mem-
ory before agreeing on any new value.

However, a proposer will not be able to learn all previous
values at once if the message length is smaller than the log of
values. We use an iterative learning process, that allows the
proposer to iterate back-and-forth between the prepare and
accept phase until all previous values have been learned.

A new proposer starts the prepare phase to learn old val-
ues, disseminates them with the accept phase, and iterates
back to the prepare phase to learn the next values, until all
values have been learned.

Ordering messages. With Wireless Paxos, it is easy to
compare two messages to decide which one is newer. The
tuple (proposal, phase) is sufficient, since a higher proposal
is always newer, and the Accept phase is a newer message if
both requests have the same proposal number.

However, with Wireless Multi-Paxos, the comparison of
the phase does not hold anymore. We extend it with the tu-
ple (proposal,round, phase). Since the round number in-

6

Table 1. Estimating the Cost of Feedback in Euratech
with 188 nodes. By repeating the flood multiple times,
reliability is improved but no feedback is available (Re-
peated Glossy). Each node can report its status with a
new flood (Glossy with Feedback) at a very high cost.
Wireless Multi-Paxos provides consensus at a lower cost.

Protocol Repeated Glossy with Wireless
Glossy Feedback Multi-Paxos

Latency [ms] 100 3760 500

creases with the iteration process, messages are correctly or-
dered once again.

Leader lease. For the optimization to hold, Multi-Paxos
requires that at most one proposer is present in the system for
a prolonged period of time. The literature refers to this pro-
poser as the leader. To avoid unnecessary competition be-
tween self-proclaimed leaders, we implement a leader lease.
Each node implicitly acknowledges the proposer with the
highest proposal as the leader, and promises not to compete
until it believes the leader has crashed.

Once it believes the leader has crashed, a node throws a
coin before proclaiming itself as the new leader.

4.3 System Details
In this section, we list key mechanisms at play in Wireless

Paxos that do not depend on a specific phase or protocol.
Proposer and acceptor. In Wireless Paxos, all nodes in

the network act as acceptors. In addition, any node can act
as proposer. If this is the case, the node will first execute
the acceptor logic, and then the proposer within the same
slot. Due to the properties of the protocol, all nodes are also
learners, at no additional computing cost.

Proposal cohabitation. We explain in §4.1 how to order
messages. Paxos requires acceptors to discard any request
older than the minProposal request. We supplement this re-
quirement by transmitting the newest message every time an
older request is received. We therefore reduce the risk and
cost of propagating outdated data.

Phase cohabitation. Due to the flooding mechanism of
Synchrotron, both phases will co-exist during a transitional
period. We reduce this transition period by two means: (a)
The proposer (and all acceptors) will always transmit the
new phase if they receive an older phase transmission; and
(b) All other nodes will reduce their transmission rate if they
receive a prepare phase message with a majority of flags and
resume at the normal rate once an accept phase is received.

4.4 Design Discussions
In this section, we explain why building consensus with

Glossy is more costly than Wireless Paxos.
Cost of Feedback. Glossy offers an ultra-low latency and

highly reliable (> 99.99%) dissemination. It means that, un-
der normal conditions, most of the nodes in the network will
receive the value. It is however not guaranteed, since Glossy
does not use explicit feedback. For example, an initiator will
never detect a network segmentation, or high message losses,

Table 2. Statistics and parameters of testbeds used in
the evaluation. They represent a very dense and a low-
density deployment, respectively. Both are collocated
with Wi-Fi and Bluetooth deployments.

Testbed Size Coord. Dens. Diam. Chann. TX Pw.
[#] ID [#] [hops] [#] [dBm]

Euratech 188 3 106 2 16 0
Flocklab 27 3 7 4 2 0

or node failures. An initiator only knows if at least one
node received the flood (due to the semantics of Glossy), and
nodes implicitly detect missed floods, but cannot recover the
value. Repeating multiple times the flood increases further
reliability, but still doesn’t provide additional guarantees. To
provide explicit feedback, each node would be required to
start its own flood to report its status (e.g., see [16]).

Small example. For example, in the Euratech testbed,
with N = 188 nodes, a flood takes 20 ms. Table 1 gives a
back-of-the-envelope calculation of the cost of feedback with
Glossy. Repeating 5 times a flood takes 100 ms. Receiving
feedback from all nodes requires 3760 ms. In contrast, we
show in §5.3 that 193 ms are needed with Wireless Multi-
Paxos to get a majority of replies, and 500 ms for all nodes
to hear about all other nodes.

4.5 On the Correctness of Wireless Paxos
In this section, we give a short and informal walk-through

of why Wireless Paxos does not break the correctness of
Paxos (see [25] for the original proofs). The main differ-
ence between Paxos and its wireless counterpart lies in the
maximum function being distributed from the proposer to all
nodes. While Paxos requires a majority of replies, Wireless
Paxos requires an aggregate from these replies.

As both the maximum and the (set) union functions —
used to compute the number of replies — are commutative
and idempotent, the local execution by all nodes of both
functions is equivalent to the execution of the functions by
the proposer alone. As such, Wireless Paxos maintains the
safety properties of Paxos.

5 Evaluation
Paxos is a notoriously complex protocol to implement,

and even tougher to evaluate [8, 35]. Wireless Paxos is no
different from that perspective. Proving that an implemen-
tation of more than a thousand lines is correct is often an
extremely delicate and cumbersome task. We instead decide
to use an extensive testing approach (like [8]), during which
we evaluate our system on physical deployments of different
topology and density.

We begin by discussing our setup. We then follow a
bottom-up approach, and present how a node’s state evolves
during a round. Then, we compare both the cost and fault re-
silience of Wireless Paxos with related network-wide primi-
tives.

7

Table 3. Slot length of each protocol. Due to their com-
plexity, WPaxos and WMulti-Paxos require more com-
putation time.

Protocol Glossy, 2&3PC WPaxos WMulti-Paxos

Slot Length 4 ms 5 ms 6 ms

5.1 Evaluation Setup
In this section, we lay out how we implement Wireless

Paxos and what scenarios are executed for the evaluation.
We then list the different metrics and testbeds used.

Implementation. We implement Wireless Paxos in C,
on top of Synchrotron [2], for the Contiki OS. We target
wireless sensor nodes equipped with a low-power radio such
as TelosB and WSN430 platforms which feature a 16bit
MSP430 CPU @ 4 MHz, 10 kB of RAM, 48 kB of firmware
storage and a CC2420 [41] radio compatible with 802.15.4.

Testbeds. We use two publicly available testbeds for our
evaluation: Flocklab [30] and the Euratech deployment of
FIT-IoT Lab [1]. Flocklab is composed of 27 nodes while
Euratech contained up to 214 nodes, with around 188 active
during our evaluation. Table 2 summarizes properties of both
deployments. Due to the closure of the Euratech testbed,
some parts of the evaluation are carried in Flocklab only.

Scenarios. We evaluate the following applications:
• The Wireless Paxos primitive (WPaxos): one proposer

starts a consensus on a 1-byte data item, leading to a
total payload of 31 bytes in Euratech and 10 bytes in
Flocklab. Both phases are executed at every flooding
round. We refer the reader to [28] for the effect of vary-
ing payload size over the system;

• The Wireless Multi-Paxos primitive (WMulti-Paxos):
one proposer starts a series of consensus on 1-byte data
items. Each flooding round corresponds to one value.
Acceptors keep a log of the last four values they agreed
on. The Prepare phase is executed during the first flood-
ing round and is skipped afterward;

• WPaxos with multiple proposers: a pre-defined number
of proposers are competing at each flooding round on
different data items;

• Consistency: At each slot, a node has a pre-defined
probability to enter in failure mode. A failed node stops
to use its radio. At the end of a flooding round, we com-
pare each node’s state to detect any inconsistency in the
consensus.

Metrics. We focus on the following indicators:
• Progress and State: the progress of a node represents

the number of participants that node heard of. Its state
represents the phase of the protocol (prepare, accept);

• Latency is refined into two notions: the Paxos latency,
representing the time when a value is chosen, and the
full completion latency, representing the time when the
lower layer Synchrotron converged (see §4.1 and §5.3);

Prepare Ph. Accept Phase Optional Result Dissemination

Figure 5. A snapshot of a typical WPaxos round: the up-
per figure represents the progress of each node (proposer
is the thick red line) while the lower represents their state.
It takes 21 slots for the proposer to receive a majority of
replies and switch to the Accept phase. It takes an ad-
ditional 35 slots for the Accept phase to complete with a
majority of flags. Results converged after 115 slots and
the flood finishes.

• Radio-on time: the total time the radio is active during
a flooding round. It is used as a proxy for the energy
consumed during a round;

• Consistency: from a network-wide perspective, it rep-
resents if nodes agree on the same final value.

Slot Length. Different protocols have different complex-
ity, and require a different amount of execution time. Table 3
contains the different slot length used during the evaluation.
Due to their complexity, both WPaxos and WMulti-Paxos
require additional computation time compared to the litera-
ture. Note that the hardware used features a 4 MHz CPU.
The computation time would be reduced on newer hardware
with a faster CPU.
5.2 Dissecting Wireless Paxos

We evaluate how a consensus is handled with Wireless
Paxos. We first analyze a representative instance of the pro-
tocol through the different node states. Then, we compare
the execution of WPaxos and WMulti-Paxos.

Basic Round. Fig. 5 depicts a representative execution of
Wireless Paxos in Euratech with 188 nodes. All nodes start
in the initial, empty state.

At slot 0, the proposer (represented by a red thick line)
starts the round with a Prepare request. Since the proposer
also acts as an acceptor, the node transitions into the Pre-
pared state. Due to the high density of Euratech, it takes
around 10 slots (50 ms), for all nodes to hear the request and
enter the prepared state.

After 21 slots (105 ms), the proposer detects that a major-
ity of nodes participated and replied with a promise. It starts
the accept phase, resets back the progress to 0 and switches
into the Accepted state. Due to the prepare phase still spread-
ing, a transition period of roughly 20 slots (100 ms) is nec-
essary for the acceptors to learn about the new phase. At slot
56 (280 ms), the proposer learns that a majority of the nodes
accepted the value (referred as Paxos latency). The value is

8

0

50

100
W

Pa
xo

s
 P

ro
gr

es
s [

%
]

0 25 50 75 100 125 150
Time [slots]

0

50

W
M

ul
ti-

Pa
xo

s
 P

ro
gr

es
s [

%
]

Acceptors (avg)
Proposer
Acceptors (min-max)
Acceptors (std)

(a) Comparing WPaxos and WMulti-Paxos.

0

250

500

750

1000

W
Pa

xo
s

La
te

nc
y

[m
s]

Dissem. value Paxos Full completion
0

200

400

600

W
M

ul
ti-

Pa
xo

s
La

te
nc

y
[m

s]

(b) Different Definitions of Consensus.

0

50

100

#n
od

es
 w

ith

 P
re

pa
re

d
 P

ro
po

sa
l [

%
]

0 20 40 60 80 100
Time [slots]

0

50

#n
od

es
 w

ith

 A
cc

ep
te

d
 P

ro
po

sa
l [

%
]

P0
P1
P2
P3

(c) Multiple Proposers Competing (WPaxos).

Figure 6. Executing Wireless Paxos (WPaxos) and Wireless Multi-Paxos (WMulti-Paxos) in Euratech with 188 nodes.
(a) WMulti-Paxos requires only one phase and finishes in roughly 83 slots, while WPaxos requires around 127 slots for
its two phases. (b) In Euratech, 248 ms and 94 ms are necessary for a dissemination to all 188 nodes for WPaxos and
WMulti-Paxos respectively. 289 ms and 133 ms are needed for the proposer to hear a majority, and it takes 633 ms and
500 ms for a network-wide knowledge of the result. (c) A line represents the number of nodes that locally prepared or
accepted a proposal, but not the progress seen by a proposer. Proposals are initially competing but quickly ruled out by
the highest proposal, and only P3 sees a majority of replies.

therefore chosen and the consensus succeeded.
The results naturally converge and at slot 115 (575 ms),

the 188 nodes learned that the entire network agreed on the
value (full completion latency).

Note. It takes exactly the same time if another value is
present in the system. The proposer would simply replace its
own value by the one reported at the end of the first phase,
and disseminate it during the accept phase.

WPaxos and WMulti-Paxos. Paxos is not an efficient
protocol. The prepare phase is necessary only if multiple
proposers are present or the node just started as proposer.
The first phase is therefore superfluous the rest of the time.
Multi-Paxos builds on that knowledge and executes the pre-
pare phase only once (cf. §2.3 and §4.2).

Fig. 6a compares the average full completion latency, i.e.,
time until Synchrotron completion, for WPaxos and WMulti-
Paxos with 188 nodes. The red line represents the pro-
poser’s progress, while the orange line represents the aver-
age progress of the acceptors. The dark-orange area repre-
sents the standard deviation of the acceptors’ progress, and
the light-orange area the minimum and maximum progress,
i.e., the slowest and fastest acceptor respectively.

It takes by average 127 slots (633 ms), for WPaxos to
complete (from a Synchrotron perspective), while it takes
only 83 slots (500 ms) for WMulti-Paxos. Removing the first
phase improves the latency although WMulti-Paxos requires
more computation time (cf. Table 3).

5.3 Paxos and Primitive Latencies
Paxos defines a consensus complete once a majority of ac-

cept responses have been received by the proposer. However,
the lower layer Synchrotron does not stop communication at
that point, but continues until all nodes have converged (i.e.,
until all nodes see all flags set, see §4.1). We measure the
latency from Paxos and Wireless Paxos perspectives.

Metrics. We select three definitions of latency: (a) Dis-
seminated value: similar to Glossy, corresponds to the time
required for all nodes to hear the value the first time; (b)

1 2 3 4 5
Number of Concurrent Proposers

0

100

200

300

400

500

Fu
ll

co
m

pl
. l

at
en

cy
 [m

s]

Figure 7. Cost of Multiple Proposers in Flocklab: the
competition between proposers causes a latency over-
head. After 3 concurrent proposers, the overhead stops
growing.

Paxos: following Paxos definition, a correct consensus re-
quires that the proposer receives a majority of replies during
the accept phase; (c) Full completion: similar to the Max
primitive of Chaos [28], the latency is defined as the time
required for all nodes to hear from all other nodes.

Results. Fig. 6b shows the reported latencies. Simply
disseminating the value is fast, it takes WPaxos only 248
ms to share the result to all nodes. Collecting feedback is
more expensive, and it takes 289 ms for the proposer to learn
that at least a majority replied to its Accept request (Paxos
definition of consensus). Collecting the flags from all the
nodes induces a large overhead, with a mean latency of 633
ms. On the other hand, WPaxos thus ensures that all nodes
received the decision, beyond the majority ensured by Paxos.

WMulti-Paxos is faster. It takes 94 ms for the dissemina-
tion, 133 ms to hear from a majority and 500 ms to receive
all flags.

5.4 Influence of Multiple Proposers
In this section, we study the effect of having more than

one proposer in the system.
Scenario. Traditional agreement protocols require at

most one node to act as a leader, and fail if multiple are

9

present. Paxos, on the other hand, can deal with the pres-
ence of more than one proposer in the system. We run sev-
eral hundred WPaxos rounds while increasing the number of
proposers in the system. Proposers are chosen following a
uniform distribution, and send a prepare request as soon as a
lower proposal is received. A proposer stops competing once
a packet with a higher proposal number is received.

In a round. Fig. 6c depicts the competition between
four proposers in the highly dense deployment of Euratech.
P0 represents the proposal of the flood initiator, while P1
to P3 are from randomly chosen proposers. As the request
floods the network, many acceptors prepare for P0. The other
proposals start competing very early but their dispersion is
slower due to the collisions during transmission. Intermedi-
ate proposals P1 and P2 cannot gain enough momentum to
collect a majority of replies.

While both P0 and P3 are heard by a majority of acceptors,
only P3 manages to collect enough responses and “wins” the
competition. After roughly 50 slots (250 ms), the proposer
of P3 starts disseminating the accept phase. The proposal is
accepted as it propagates through the network.

Latency. Fig. 7 characterizes the effect of competition
in terms of full completion latency in Flocklab, although the
Paxos latency follows the same behavior. The presence of
multiple proposers induces an overhead of up to 100 ms in
Flocklab.

As the number of concurrent proposers grows, the over-
head starts to plateau. Acceptors quickly discard lower pro-
posals to force the spread of the highest proposal, and com-
petitors are quickly ruled out of the system. In addition, a
proposer will not compete if its own proposal is lower than
the proposal received.

With WMulti-Paxos, the overhead is only present when
the first phase is executed and with similar results. Any con-
secutive round is executed as usual as long as proposers do
not compete again.

5.5 Comparing the Cost of Primitives
We evaluate the cost of running the WPaxos primitive,

and compare it with dissemination (Glossy [17]) and agree-
ment primitives (2&3PC from A2 [2]), in terms of latency
and radio-on time. Since the lower layer Synchrotron con-
tinues to communicate after a value is chosen, we use the
full completion latency (see §5.3) as metric.

Scenario. We compare five applications: (a) Glossy
Mode (Glossy), a one-to-all dissemination mode without
flags; (b) Two-Phase Commit (2PC), an all-to-all agreement
protocol with flags and votes introduced to A2; (c) Three-
Phase Commit (3PC), similar to 2PC but with an additional
phase, also introduced by A2; (d) the Wireless Paxos primi-
tive; and (e) the Wireless Multi-Paxos primitive.

Experiments are run both for Flocklab with 27 nodes and
Euratech with 188 nodes. All applications are executed for
2500 rounds in Flocklab, and for a thousand rounds in Eu-
ratech. Glossy, 2PC and 3PC are executed only for several
hundred rounds in Euratech due to the final closure of the
testbed. The results reported here are nonetheless consistent
with the results reported by A2 [2]. The slot length used are
summarized in Table 3.

Results. Fig. 8 summarizes the comparison in terms of
full completion latency, both in slots and milliseconds, and
in terms of radio-on time. First, we observe a cost increase
with the number of nodes. The increase is however not pro-
portional, as Euratech is seven times larger than Flocklab but
induces an increase of roughly 2.5× only. This is mainly due
to the difference in density and topology of the deployments.

We now take a look at the performance of each applica-
tion. Glossy is the fastest since it does not require feedback,
but does not provide the same guarantees as consensus (see
§2.1). WMulti-Paxos has the second lowest cost, since only
one phase is executed. WPaxos shows a cost of roughly 1.5×
the cost of WMulti-Paxos in terms of slots. This is due to
the fact that the primitive has two phases, but the first one
requires half the nodes only. 2PC is roughly 2× more ex-
pensive than WMulti-Paxos in terms of slots, while 3PC is
roughly 3× more costly. Again, it translates to the two and
three phases of 2&3PC, respectively.

Due to the different slot length (cf. Table 3), the improve-
ments of WMulti-Paxos are less visible when considering
the latency in milliseconds. WPaxos takes 1.3× the time of
WMulti-Paxos, while 2PC takes 1.4× the time in Euratech
and 3PC takes 2.4× the time of WMulti-Paxos. Again, we
point out that these results are due to the hardware used (4
MHz CPU). Modern hardware would provide improved re-
sults, closer to the slot latency.

Note that in Flocklab, WPaxos and 2PC presents a simi-
lar latency, even if WPaxos requires fewer slots. For small
deployments, the length of the slot has a bigger effect than
for dense deployments.

Finally, the radio-on time represents how long the radio
was active (either transmitting or receiving), and is used as a
proxy for energy consumption. Once again, WMulti-Paxos
and WPaxos require fewer transmissions than their counter-
parts 2PC and 3PC, since they rely on majorities.
5.6 Primitives Consistency

In this section, we evaluate the consistency of the different
primitives under injected failures.

Scenario. Paxos, by design, is tolerant against failures,
and solve them by using majorities, while 2PC delays the de-
cision (consistency over availability). We compare how the
different consensus primitives are affected by node failures.

We run Wireless Paxos on Flocklab for 900 rounds with
different failure rates. At each slot, each node can fail fol-
lowing a given probability (from 0 to 4×10−5), i.e., it stops
communicating for the duration of the round. This fail-
ure model is similar to a network segmentation or a crash-
recovery where the node saves the result of the consensus in
a stable storage.

A round is considered consistent if all nodes have the
same value in the end. In WPaxos, a consensus is also con-
sistent if at least a majority share the same decision, even
if some node missed the value. We refer to those cases as
MAJ-consistent. A system can also abort a decision in 2PC
and 3PC. The result is consistent if all nodes have aborted. A
blocked round means no decision has been chosen yet. Other
cases are inconsistent.

Results. Fig. 9 shows the result of consensus under fail-
ure. Because WMulti-Paxos executes the accept phase only,

10

Flocklab (27) Euratech (188)0
50

100
150
200
250
300
350

Fu
ll

co
m

pl
. l

at
en

cy
 [s

lo
ts

]

Flocklab (27) Euratech (188)0
250
500
750

1000
1250
1500

Fu
ll

co
m

pl
. l

at
en

cy
 [m

s]

Flocklab (27) Euratech (188)0
250
500
750

1000
1250
1500

Ra
di

o-
on

 ti
m

e
[m

s]

Glossy WMulti-Paxos WPaxos 2PC 3PC

Figure 8. Comparing the cost of different primitives: Glossy solves dissemination, WPaxos and WMulti-Paxos solve
consensus while 2PC and 3PC (here from A2 [2]) solve commit (agreement). The cost increases with the complexity (i.e.,
the number of phases). The latency is measured for the network-wide dissemination of the final decision.

the consensus is faster and less prone to failure. WPaxos,
with its two phases, is slightly less resilient. As the failure
rate increases, some nodes are missing the final value. The
consensus remains nonetheless correct and nodes can even-
tually learn the decision, keeping the system consistent.

2PC blocks if at least one node is missing the decision.
Strong consistency is maintained at the cost of availability.
3PC requires more communication, and is thus more prone to
faults. Some rounds were inconsistent (some nodes aborted
while others committed). However, 3PC is non-blocking by
design.
6 Related Work

Concurrent Transmissions. Glossy [17] is one of the
pioneer works in the field of concurrent transmissions. In
Glossy, nodes synchronously transmit the same packet, al-
lowing constructively interfering signals to be received.
Glossy thus provides highly reliable and low latency dissem-
ination. LWB [15] and Crystal [22] use Glossy to provide
data dissemination and collection from all nodes by schedul-
ing and executing floods sequentially.

By relying on the capture effect instead of constructive
interference, Chaos [28] and Mixer [20] relax the tight syn-
chronization condition and can transmit different data con-
currently. Chaos uses in-network processing to provide data
collection and aggregation by applying an aggregation func-
tion locally over the received data, while Mixer uses network
coding to provide many-to-all communication.

Consensus. In distributed systems, agreement and con-
sensus have been extensively studied for several decades
already. Well-known solutions include 2PC [19] and 3PC
[39]. Other solutions, like PBFT [7], provide a solution in
the presence of Byzantine faults. Paxos is a general (non-
Byzantine) fault-tolerant solution to the consensus problem
[24, 25]. Paxos has been extended and further optimized,
for example with Fast Paxos [26], Cheap Paxos [27] or Ring
Paxos [31]. Raft [35] is an alternative to Paxos, designed to
be more comprehensive.

Consensus in WSNs. Consensus has been studied in op-
portunistic and ad-hoc networks [3, 9]. However, most ap-
proaches focus on single-hop networks [4, 42]. Consensus
with Byzantine failures in single-hop networks has also been
studied [34].

Most multi-hop consensus solutions rely on routing.
Köpke proposes an adapted 2PC for WSNs [23], while Bor-

ran et al. extends Paxos with a new communication layer
for opportunistic networks [5]. Borran’s solution relies on
the MAC layer of 802.11 and builds a tree to collect and
route responses. Furthermore, unicast and acknowledgments
are used for collecting responses. In contrast, this work co-
designs Paxos with the lower layers of the network stack to
provide an efficient and low-latency consensus primitive for
low-power wireless networks. We do not rely on any rout-
ing, but utilize concurrent transmissions to communicate in
multi-hop networks.

A2 provides an implementation of 2&3PC using concur-
rent transmissions [2]. Wireless Paxos reuses the transmis-
sion kernel introduced by A2, but the consensus primitives
differ. A2 handles failures by delaying the decision (consis-
tency over availability), while Paxos handles failures through
majorities.

Finally, VIRTUS [16] brings virtual synchrony to low-
power wireless networks. Virtual synchrony provides atomic
multicast, i.e., it allows to deliver messages in order to all
members of a group, or none. Virtual synchrony and Multi-
Paxos are two ways to create state machine replication in
distributed systems. Both solutions provide guarantees on
the consistency of delivered messages. We argue in §4.4 why
Glossy-based schemes (like VIRTUS) induce higher costs
than Wireless Paxos.

7 Conclusion
This paper presents Wireless Paxos, a fault-tolerant,

network-wide consensus primitive that builds on top of con-
current transmissions to offer low-latency and reliable con-
sensus in low-power wireless networks. We argue that
although established consensus protocols like Paxos offer
many benefits like fault-tolerance, correctness, and con-
sistency guarantees, their designs, based on unicast com-
munications, make them unfit for low-power wireless de-
ployments. Wireless Paxos fills this gap by showing that
Paxos can be expressed as a many-to-many communication
scheme, and by co-designing the consensus primitive along
with the lower layers of the network stack and concurrent
transmissions to offer highly reliable and low-latency con-
sensus. We experimentally demonstrate that Wireless Paxos
(a) guarantees that at most one value can be agreed upon, (b)
provides consensus between 188 nodes in a testbed in 289
ms, and (c) stays consistent under injected failures.

11

0
1e

-5
2e

-5
4e

-5
80

85

90

95

100
Ou

tc
om

e
[%

]
WMulti-Paxos

Consistent
MAJ-Consistent
Inconsistent
Abort
Blocked

0
1e

-5
2e

-5
4e

-5

WPaxos

0
1e

-5
2e

-5
4e

-5

2PC

0
1e

-5
2e

-5
4e

-5

3PC

Figure 9. Consensus consistency under injected failure: WPaxos handles failures with majorities and semantics, while
2PC is blocking (consistency over availability), and 3PC is non-blocking but sometimes inconsistent.

8 Acknowledgments
We would like to thank the anonymous reviewers, as well

as Simon Duquennoy, Marco Zimmerling, and Carlo Alberto
Boano, for their valuable comments and suggestions to im-
prove the paper. This work was supported by the Swedish
Foundation for Strategic Research (SSF) through the project
LoWi, reference FFL15-0062.
9 References

[1] C. Adjih, E. Baccelli, E. Fleury, and G. Harter et al. FIT IoT-LAB: A
large scale open experimental IoT testbed. IEEE WF-IoT, 2015.

[2] B. Al Nahas, S. Duquennoy, and O. Landsiedel. Network-wide con-
sensus utilizing the capture effect in low-power wireless networks. In
ACM SenSys, 2017.

[3] A. Benchi and P. Launay. Solving Consensus in Opportunistic Net-
works. In ICDCN, 2015.

[4] C. A. Boano, M. A. Zúñiga, K. Römer, and T. Voigt. JAG: Reliable
and predictable wireless agreement under external radio interference.
In IEEE RTSS, 2012.

[5] F. Borran, R. Prakash, and A. Schiper. Extending paxos/lastvoting
with an adequate communication layer for wireless ad hoc networks.
In IEEE SRDS, 2008.

[6] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-mac: A short
preamble mac protocol for duty-cycled wireless sensor networks. In
ACM SenSys, 2006.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance. In UN-
ESIX OSDI, 1999.

[8] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. In ACM PODC, 2007.

[9] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte. Con-
sensus and collision detectors in wireless ad hoc networks. In ACM
PODC, 2005.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, and C. Frost et al. Span-
ner: Google’s globally-distributed database. In USENIX OSDI, 2012.

[11] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems (3rd
Ed.): Concepts and Design. Addison-Wesley Longman Publ., 2001.

[12] M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast data
dissemination with constructive interference in wireless sensor net-
works. In USENIX NSDI, 2013.

[13] A. Dunkels. The contikimac radio duty cycling protocol. Technical
report, SICS, 2012.

[14] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis.
Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless. In ACM SenSys, 2010.

[15] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power
wireless bus. In ACM SenSys, 2012.

[16] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Virtual syn-
chrony guarantees for cyber-physical systems. In IEEE SRDS, 2013.

[17] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. In ACM/IEEE IPSN,
2011.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 1985.

[19] J. Gray. Notes on data base operating systems. In Operating Systems,
An Advanced Course, 1978.

[20] C. Herrmann, F. Mager, and M. Zimmerling. Mixer: Efficient many-
to-all broadcast in dynamic wireless mesh networks. In ACM SenSys,
2018.

[21] M. Isard. Autopilot: Automatic data center management. Technical
report, Microsoft, 2007.

[22] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza. Data predic-
tion + synchronous transmissions = ultra-low power wireless sensor
networks. In ACM SenSys, 2016.

[23] A. Köpke. Engineering a communication protocol stack to support
consensus in sensor networks. PhD thesis, TU Berlin, 2012.

[24] L. Lamport. The part-time parliament. ACM TOCS, 16(2), 1998.
[25] L. Lamport. Paxos made simple. SIGACT, 32, 2001.
[26] L. Lamport. Fast Paxos. Distributed Computing, 19(2), 2006.
[27] L. Lamport and M. Massa. Cheap Paxos. In IEEE/IFIP DSN, 2004.
[28] O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile and

efficient all-to-all data sharing and in-network processing at scale. In
ACM SenSys, 2013.

[29] K. Leentvaar and J. Flint. The capture effect in FM receivers. IEEE
Trans. on Communications, 1976.

[30] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, and P. Sommer et al.
Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems. In ACM/IEEE IPSN, 2013.

[31] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone. Ring paxos: A
high-throughput atomic broadcast protocol. In IEEE/IFIP DSN, 2010.

[32] J. P. Martin and L. Alvisi. Fast byzantine consensus. IEEE Trans. on
Dependable and Secure Computing, 3(3), 2006.

[33] I. Maza, F. Caballero, J. Capitán, J. R. Martı́nez-de-Dios, and
A. Ollero. Experimental results in multi-UAV coordination for dis-
aster management and civil security applications. J. of Intelligent &
Robotic Systems, 61(1), 2011.

[34] H. Moniz, N. F. Neves, and M. Correia. Byzantine fault-tolerant con-
sensus in wireless ad hoc networks. IEEE Trans. on Mobile Comput-
ing, 12(12), 2013.

[35] D. Ongaro and J. Ousterhout. In search of an understandable consen-
sus algorithm. In USENIX ATC, 2014.

[36] J. Polastre, J. Hill, and D. Culler. Versatile low power media access
for wireless sensor networks. In ACM SenSys, 2004.

[37] W.-B. Pöttner, H. Seidel, J. Brown, U. Roedig, and L. Wolf. Con-
structing schedules for time-critical data delivery in wireless sensor
networks. ACM TOSN, 10(3), 2014.

[38] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to build a scalable,
consistent, and highly available datastore. VLDB Endowment, 4(4),
2011.

[39] D. Skeen and M. Stonebraker. A formal model of crash recovery in a
distributed system. IEEE Trans. on Soft. Eng., SE-9(3), 1983.

[40] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis. The β-
factor: Measuring wireless link burstiness. In ACM SenSys, 2008.

[41] Texas Instruments. Chipcon CC2420: 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver, 2006.

[42] Q. Wang, X. Vilajosana, and T. Watteyne. 6TiSCH Operation Sublayer
Protocol (6P). IETF draft-ietf-6tisch-6top-protocol-12, IETF, 2018.

12

