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Abstract

Today’s commercial Internet of Things devices remain
largely dependent upon batteries, which offer high capac-
ity, stable energy storage at the expense of limited shelf-lives
and toxic chemical compositions. Research on sustainable
energy harvesting platforms is essential to realizing a new
generation of long-lived and environmentally friendly IoT
products. This paper contributes to this goal by introducing
ASTAR, an energy-aware task scheduler and associated ref-
erence platform that aims to lower the burden of developing
sustainable applications through self-adaptive task schedul-
ing. We evaluate AsTAR based on its capability to deliver
sustainable operation on heterogeneous platforms. Evalua-
tion shows that: (i.) With zero modeling AsTAR rapidly
identifies optimum task scheduling rates, while (ii.) react-
ing quickly to environmental change and (iii.) these features
incur minimal performance overhead in terms of memory,
computation and energy. Considered in sum, we believe that
these features significantly simplify the process of creating
sustainable energy harvesting IoT applications.
Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Sys-
tems]: Microprocessor/microcomputer applications, Real-
time and embedded systems
General Terms

Design, Experimentation, Management
Keywords

Energy harvesting,
Things
1 Introduction

The Internet of Things (IoT) is being deployed at mas-

sive scale in homes, smart cities and industrial applications.
Analysts such as Gartner [14] and Forrester [16] predict that
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billions of IoT devices will be deployed by the year 2020.
In this context, the typical battery life of IoT devices, which
ranges from a few years to a decade, is problematic. Man-
ually replacing billions of batteries is not economically fea-
sible, and abandoning large quantities of toxic batteries in
our environment is not sustainable, as batteries require many
years to fully decompose. Energy harvesting provides the
only feasible means to address this problem. By ensuring
that IoT devices can be perpetually powered by environmen-
tal energy, batteries can be eliminated, conserving both hu-
man effort and the environment.

While the potential of energy harvesting in the IoT is
clear, it is notoriously complex to develop reliable energy
harvesting applications due to three factors: (i.) Environ-
mental dynamism, which gives rise to an unpredictable
power budget, (ii.) heterogeneity in platform and periph-
eral power consumption profiles and (iii.) the tragedy of the
coulombs [8] wherein a single energy-hungry software mod-
ule can starve all other modules of energy, rendering the de-
vice inoperable.

This paper addresses these three problems by introduc-
ing AsTAR (named for its Asymmetric Task Adaptation
Rate scheduler), a hardware and software platform for build-
ing energy harvesting IoT applications. AsTAR addresses
environmental dynamism by providing self-adaptive task
scheduling. Sustainability is ensured by throttling task exe-
cution rates as required to acquire and sustain a developer-
specified optimal level of charge. AsTAR is fully au-
tonomous and requires no pre-configuration or a-priori mod-
eling to deal with different energy harvesting sources or
peripheral hardware, which may even be modified at run-
time. Fine-grained control over task execution and periph-
eral usage prevent a single energy-hungry software mod-
ule from rendering the system non-functional. The novel
contributions of AsTAR are threefold: (i.) Simple, yet ef-
fective energy-aware task scheduling on IETF Class-1 de-
vices [12], (ii.) Support for platform heterogeneity and dy-
namism with zero up-front modeling and (iii.) A reference
platform for experimentation with sustainable energy har-
vesting applications.

We evaluate AsTAR in both laboratory tests and a realis-
tic deployment scenario, using indoor solar energy harvest-
ing. Evaluation shows that (i.) AsTAR achieves its goal of
amassing an optimal charge level on heterogeneous hardware
platforms, (ii.) AsTAR adapts quickly to dynamic levels of
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power production or consumption and (iii.) ASTAR has ex-
tremely low performance overhead even on IETF Class-1 de-
vices. Considered in sum, we believe that ASTAR’s features
significantly simplify the development of sustainable energy
harvesting IoT applications.

The remainder of this paper is structured as follows.
Section 2 discusses related work and highlights the gap
that AsTAR addresses in the research literature. Section 3
presents the ASTAR approach including adaptive task
scheduling, software stack, and hardware platform. Sec-
tion 4 describes our reference implementation. Section 5
evaluates the performance of AsTAR. Finally, Section 6
concludes and discusses directions for future work.

2 Related Work

We review three key streams of research that are related
to energy harvesting. Section 2.1 reviews prior work on en-
ergy harvesting and battery-free platforms. Section 2.2 dis-
cusses OS support for energy harvesting. Section 2.3 dis-
cusses software development support for energy harvesting
applications. Finally, in Section 2.4 we highlight the gap in
prior research that is addressed by AsTAR. Due to space con-
straints, we are unable to provide a complete review of prior
energy harvesting work. For a more in-depth view on the
topic, we refer the reader to [2].

2.1 Energy Harvesting IoT Platforms

The first generation of energy harvesting platforms for the
IoT augmented battery-powered systems with solar panels
to extend the service-life of devices and to provide an ex-
panded energy envelope for system operation. Hughes et
al. developed GridStix [11], a wireless sensor network for
flood monitoring and warning that was capable of sustain-
able multi-year operation using a combination of solar pan-
els and rechargeable batteries. By adapting its network stack,
GridStix provided reliable telemetry in different operational
conditions [20]. Taneja et al. [22] and Buchli et al [3] devel-
oped systematic models of solar energy production in out-
door sensing scenarios. Hsu et al. [10] tackle the problem of
optimally scheduling solar device operation under variable
solar loads based upon a combination of in-situ benchmark-
ing and modeling. While the majority of work in the area
of predictive energy harvesting has focused on solar power,
Gaglione et al. also demonstrated sustainable battery-free
operation using harvested kinetic energy in a vibration based
structural health monitoring application [7] using a combi-
nation of benchmarking and simulation.

Contemporary energy harvesting platforms enable a
broader range of energy harvesting sources such as vibra-
tion, thermal and solar, and eliminates batteries as energy
storage in order to prolong the operational life of IoT de-
vices. While the lifetime of an appropriately selected super-
capacitor is orders of magnitude longer than a standard bat-
tery, the charge density of capacitors is far lower than that
of batteries. The result is that battery-free sensing platforms
have a much smaller and more dynamic energy envelope than
battery-powered systems. Hester et al., identify the ‘Tragedy
of the Coulombs’ in energy harvesting systems wherein a
single energy-hungry hardware or software component can

consume sufficient energy to render the entire system inoper-
able. United Federation of Peripherals (UFoP) [8] addresses
this problem through a hardware-driven solution, wherein
harvested energy is divided into multiple peripheral-specific
capacitors, which provide independent power sources and
therefore prevent a single sub-optimal peripheral from caus-
ing the Tragedy of the Coulombs. Flicker [9] builds on UFoP,
extending the concept of isolated per-peripheral energy stor-
age to support plug-and-play peripheral boards that may be
flexibly connected at development time. Hester et al. demon-
strate through representative user-trials that the isolation of
peripheral power consumption significantly reduces the dif-
ficulty of realizing energy-harvesting applications.

The approaches to energy harvesting described above fall
into two broad categories. The first category of research is to
provide sustainable operation in the face of dynamic energy
availability [11] [22]. The second approach embraces inter-
mittent operation [8] [9]. AsTAR contributes to the sustain-
ability stream of research, aiming to ensure sustainable sys-
tem operation on a battery-free energy harvesting platform
that can function as a drop-in replacement for long-life bat-
tery powered systems.

2.2 OS Support for Energy Management

IoT Operating Systems (OSs) play a key role in manag-
ing the complexity of a dynamic energy envelope through
the adaptive scheduling of tasks and the reconfiguration of
system-level functionality. Nano-RK [6] provides energy
awareness on an embedded Real Time OS (RTOS). As with
many Real Time Operating Systems, Nano-RK guarantees
that task deadlines are met using priority-based preemptive
multi-threading. Nano-RK mediates access to every system
resource with a consistent API and is thereby capable of per-
forming fine-grained energy accounting based upon an en-
ergy model, which is established prior to deployment. Nano-
RK is deeply dependent upon its static energy model, which
makes it difficult to apply on reconfigurable IoT platforms
such as Flicker [9] and uPnP [24].

The Cinder OS [19] is built for energy sensitive mobile
devices such as smart phones. Cinder supports energy man-
agement by providing developers with two dedicated ab-
stractions, reserves and taps. A reserve permits an applica-
tion to use a certain amount of energy, while a fap limits the
maximum rate of energy that can be transferred or consumed.
Cinder tasks may allocate energy from their reserve to sub-
tasks and control the rate of energy consumption through the
tap. These features together lower the burden on developers
to create energy-aware applications. However, Cinder does
not consider energy harvesting. Furthermore, it targets far
more powerful mobile-phone class devices.

Cao et al. [4] provide support for energy management
on multi-application IoT devices by introducing dedicated
energy management abstractions in the form of reserves,
which provide a virtual representation of the amount of en-
ergy available to an application. Isolation of energy reserves
is enforced by the system at runtime to ensure fair access to
energy resources on shared platforms. When an application
exhausts its reserve, it is terminated. This approach is depen-
dent upon a common virtual machine which mediates and
can therefore control access to low-level, energy consuming



resources.

Eon [21] is a programming language and supporting run-
time that is designed to facilitate the development of perpet-
ually powered systems. Eon allows programmers to define
multiple paths or flows through a program. The Eon sched-
uler then selects flows and their rates of execution based
upon the current energy levels in order to maintain sustain-
able operation. Eon makes energy supply predictions based
upon an Exponentially Weighted Moving Average (EWMA)
of observed energy generation, while energy consumption
estimates are based upon benchmarks obtained from testing
of each hardware and software platform.

2.3 Software Development for Energy Har-
vesting Applications

It is notoriously difficult to develop energy-aware soft-
ware that is capable of sustainable operation in unpredictable
energy harvesting conditions. Prior work has contributed a
number of software engineering tools to reduce this com-
plexity.

Eco [25] is a programming model for sustainable soft-
ware. Programs written in Eco may adaptively adjust their
behavior to stay within a given energy or temperature budget.
Eco achieves a fine-grained, programmable, and declarative
sustainability by the language runtime consistently matching
supply and demand. This feature would significantly sim-
plify the creation of sustainable energy harvesting applica-
tions. However, the Eco runtime targets only server-class
devices with orders of magnitude more resources than typi-
cal IoT devices.

Ritter et al. [18] combine software instrumentation and
super-capacitor charge storage to accurately estimate the
lifetime of an IoT device. By replacing the battery of the
device with an appropriately sized capacitor and measuring
the voltage before and after the execution of a function, Rit-
ter et al. demonstrate that it is possible to accurately mea-
sure energy consumption based upon the near linear rela-
tionship between the capacitor voltage and average current
with a fixed capacitor. While the authors do not focus on
energy-harvesting, the paper showcases a secondary bene-
fit of using super-capacitors beyond their long lifespan; the
ability to profile energy consumption in the field. This pro-
posed methodology is dependent upon manual code instru-
mentation and therefore should be expected to incur signifi-
cant development-time overhead.

Lachenmann et al. [13] append energy consumption data
to software tasks and enable developers to assign tasks within
energy levels, which may be deactivated in order to reduce
energy consumption. The Levels task scheduler then selects
the highest energy level, and thus group of associated tasks,
which may be executed while still achieving a given lifetime
goal. This approach ensures that battery lifetime goals are
met, while allowing developers to prioritize tasks for execu-
tion. All energy estimates must be generated before deploy-
ment.

2.4 Gap Analysis and Requirements

We now reflect on the gap that AsTAR addresses with re-
spect to the related work discussed in Section 2.1 to Sec-
tion 2.3.

® Reducing the burden of benchmarking: many of the
approaches described above [18] [13] [22] [3] demand
the creation of detailed hardware models. Modeling re-
quires significant effort and access to laboratory equip-
ment, forming a barrier to entry for energy aware soft-
ware development. We argue that energy management
software should not require up-front benchmarking and
instead gather all necessary information automatically.

e Operation on heterogeneous platforms: 1oT applica-
tions increasingly run across multiple platforms and,
for most energy management approaches, this requires
extensive re-parameterization of an underlying energy
model. The problem is even more acute for recon-
figurable IoT platforms [9] [24], where the hardware
base may change at runtime through the connection of
new peripherals. Energy aware software should cope
with platform heterogeneity without the need for per-
platform developer intervention.

o Mitigating dynamism: To maximize applicability, en-
ergy management approaches for energy harvesting IoT
platforms should ideally respect the inherently unpre-
dictable nature of many environments, where available
energy from light, heat or vibration may vary widely
or even be lost without notice. In such unpredictable
environments, long term modeling [22] [3] is likely to
prove unproductive. In the case of reconfigurable IoT
platforms such as Flicker [9] and uPnP [24], the mod-
ification of connected peripherals at runtime gives rise
to dynamic power demands.

e Low runtime overhead: Finally, any energy man-
agement approach must naturally itself be efficient
in terms of memory and computation if it is to be
implemented on IETF Class-1 IoT devices, precluding
heavyweight techniques such from mainstream com-
puter systems [25] [19] [20] .

The following section discusses how the design of
ASTAR achieves sustainable energy harvesting operation,
while addressing the gaps identified in prior research.

3 AsTAR Approach

The primary design goal of AsTAR is to ensure sustain-
able operation in the widest possible range of energy har-
vesting scenarios. The AsTAR approach achieves this by
optimizing task scheduling in order to first acquire and then
sustain a developer-specified optimum level of stored energy.
ASTAR aims to accomplish this without benchmarking or en-
vironmental modeling in order to minimize developer effort.
Instead, AsTAR continually observes and reacts to system
state at runtime. Maximizing task execution rates is useful
for all sensing tasks that benefit from higher temporal reso-
lution in order to reduce latency.

Scope and limitations: AsSTAR’s energy aware adap-
tation is limited in scope to adapting how often sensor tasks
may execute. The more frequently a sensing task is executed,
the higher the temporal resolution of sensed data. However,
this higher resolution comes at the expense of greater en-
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ergy consumption. AsTAR strives to balance these conflict-
ing optimization goals by maximizing task execution to the
greatest extent possible, while also ensuring that charge is
smoothly accumulated and sustained at a developer-specified
optimum. The AsTAR approach is limited in its applicabil-
ity of tasks whose schedule can be independently controlled,
such as sensing operations.

AsTAR is designed to deal with platform heterogeneity in
terms of: device power supply, peripheral power demands
and energy storage capacity. ASTAR also aims to operate in
unpredictable energy harvesting environments where it miti-
gates dynamism. In the design of AsTAR, we have drawn in-
spiration from the Additive Increase Multiplicative Decrease
(AIMD) technique that is used to implement congestion con-
trol in TCP. TCP senses congestion and responds by increas-
ing or decreasing message rates. By using different behav-
ior when increasing (additive) and decreasing (multiplica-
tive) transmission rates, AIMD tends to avoid oscillation and
spends most of its time near an optimum value. In 1989,
Chiu et al. [5] showed that AIMD is near optimal in identi-
fying an optimum messaging rate for a channel of unknown
and dynamic capacity. From a non-functional perspective,
AIMD has two important properties: (i.) it is extremely
lightweight, storing minimal state and (ii.) it is robust, hav-
ing been deployed and studied at massive scale for over 40
years.

Intuitively, the properties of AIMD are a good fit with
the energy harvesting problem tackled by AsTAR, though we
have modified the operation of the scheme to reflect that the
goal of charge accumulation is to reach an optimum, rather
than to maximize charge to the greatest extent possible. Sec-
tion 3.1 describes the adaptive AsTAR task scheduling algo-
rithm and how we have modified AIMD for our application
case. Section 3.2 then describes the ASTAR software plat-
form. Finally, Section 3.3 describes the AsTAR hardware
platform.

3.1 Adaptive Task Scheduling

AsTAR tasks are self-contained and execute at a rate con-
trolled by the AsTAR runtime. AsTAR observes capacitor
charge levels by periodically measuring the capacitor volt-
age at a rate specified by the developer, and based upon
the observed level of stored charge, task execution rates are
adapted. AsTAR monitors and reacts to changes in stored
charge, rather than energy supply as this inherently take into
account the complex interactions that occur between supply
current, supply voltage, capacitor voltage and capacitor leak-
age current, all of which would otherwise need to be explic-
itly modeled. Our initial prototype of AsTAR treats all tasks
as equally important and does not allow for prioritization.
We plan to add support for this in our future work.

Energy Aware Task Scheduling: AsTAR defines three
charge levels which guide the operation of the task schedul-
ing algorithm based upon the voltage of the supercapacitor.
These levels may be configured by the developer prior to de-
ployment.

o Shut-off Voltage state: In this state, system voltage has
fallen to a level below the user specified Shut-off Volt-
age (SV). The primary goal of the system is to max-
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imize sustainability by reducing power consumption.
All application tasks are therefore disabled until suffi-
cient charge accumulates to run all system components.

e Low Voltage state: in this state, which lies between
the Shut-off Voltage (SV) and Optimum Voltage (OV)
thresholds, the goal of the system is to increase the
frequency of tasks while ensuring that charge accumu-
lates during each adaptation-period. The system ap-
plies AIMD on scheduling task rate in this state, where
it gently probes the available energy supply by increas-
ing task rates additively and, if charge ceases to accu-
mulate in the capacitor, backs off aggressively using
multiplicative decrease to protect the charging process.

// The adaptation algorithm
uint16_t get_adapted-_rate (){
read Capacitor_Voltage from ADC

if Capacitor_Voltage < Shut_Off_-Threshold
Shut_Off_state ()

else if Capacitor_Voltage < Optimum_Voltage_Threshold
Low_Voltage_state ()

else if Capacitor_Voltage > Optimum_Voltage_Threshold
High_Voltage_state ()

else
Optimum_Voltage_state ()

return task_.rate

} // End of function

// Low Voltage state function:
Low_Voltage_state (){
if voltage is rising
task_rate ++
else
task_rate =

apply AIMD

task.rate / 2

}

// High Voltage state:
High_Voltage_state (){
if voltage is falling
task-rate — —
else
task_rate =

apply MIAD

task_rate * 2

}

// Optimum voltage state:
Optimum_Voltage_state () {

task_rate = task.rate
}

// Shut off state:
Shut_Off_state (){
task_rate = 0

}

stay the same rate

Task disabled

Listing 1. Pseudocode of the AsTAR adaptation algo-
rithm

e Optimum Voltage state: in this state, charge levels are
optimal and the goal of AsTAR is to remain at this
charge level. Task rates will not be adapted unless
charge falls into the LV state, or rises into the HV state.

e High Voltage state: In this state, system voltage is
above the Optimum Voltage (OV) threshold. The goal
of the system is to make the most use of the abundant
energy to avoid wasting energy above the OV thresh-
old. AsTAR applies AIMD in reverse: if charge is not




decreasing, tasks rates are Multiplicatively Increased
(MI). Conversely, when voltage level falls, AsTAR
gently reduces task rates with Additive Decrease (AD)
to prevent under-shooting the optimum.

The AsTAR scheduling algorithm is simple and compact,
as is shown by the pseudo code provided in Listing 1. Fur-
thermore, ASTAR requires very little state information. All
decision making is based upon the developer-specified SV
and OV thresholds (which implicitly defines the four states)
along with current and previous voltage readings and per-
task minimum and maximum execution rates. Together As-
TAR requires a fixed total of 4 bytes of memory for system
wide configuration and 8 bytes per task. This makes AsTAR
suitable for even the most constrained embedded devices.
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Figure 1. AsTAR software architecture extends Real

Time Operating Systems.

3.2 ASTAR Software Stack

To achieve per-task energy accounting, AsTAR extends
Real Time Operating Systems (RTOS) with support for en-
ergy awareness. Real-time task scheduling is necessary to
ensure that tasks execute atomically and thereby isolate their
individual power consumption by measuring capacitor volt-
age before and after every task execution.

The core of ASTAR is the Sentinel task, which controls
and manages the execution of all energy aware AsTAR tasks.
Each ASTAR task registers with the sentinel, passing its
maximum and minimum execution rate. The sentinel will
then schedule each application task according to the algo-
rithm described in Section 3.1 within the minimum/maxi-
mum range. The in-situ power monitor task is controlled
and configured by the Sentinel task.

The API to register tasks is as follows:

register(task, min_rate, max_rate)

Where task is a reference to the task to be scheduled,
min_rate specifies the minimum rate at which the task must
run, and max_rate specifies the maximum rate at which the
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Figure 2. Architecture of the minimalist ASTAR hard-
ware platform. AsTAR can operate with various energy
harvesters, supercapacitors and peripherals.

task may run. All task rates are currently specified in mes-
sages per hour.

ASTAR tasks may call any underlying system functional-
ity, however, the tasks themselves are fully isolated and may
therefore communicate only via messaging over the network
stack. In terms of energy, the sentinel considers tasks to be
black boxes and all energy accounting and control occurs at
the level of individual task execution

Background power consumption below the level of the
ASTAR software runtime is neither measured nor controlled,
however AsTAR tasks will adapt to this changing load by
modifying their own behavior. The greater the proportion
of system functionality that is realized as AsTAR tasks, the
finer the granularity with which energy can be managed.

3.3 AsSTAR Hardware Platform

We have designed a minimalist battery-free Internet of
Things hardware platform equipped with support for energy
harvesting in order to evaluate AsTAR. This platform uses
a super-capacitor for energy storage and may use various
forms of harvested energy as its power supply. The platform
can be configured to work with different application periph-
erals. The AsTAR software stack adapts to different sizes of
a capacitor, a variety of peripherals, and harvesting sources.

The design of AsTAR hardware strives for simplicity, it
consists of only the basic elements of an energy harvesting
IoT platform, which ensures that it is easy to port AsTAR
to other platforms. A key feature of the AsTAR hardware
platform is its modular design, which allows the energy har-
vester, super-capacitor, and application peripherals to be re-
placed. In the case of peripherals, these may also be replaced
at runtime. Figure 2 provides a high level overview of the
ASTAR hardware platform, the major elements of which are
explained below.

Super-capacitor Energy Storage: As can be seen in Fig-
ure 2, the AsTAR hardware platform uses a super-capacitor
as its primary energy storage. The platform design makes no
assumptions about the specifications of its super-capacitor.
The adaptive software stack introduced in Section 3.1 will
adapt system behavior to suit the characteristics of this super-
capacitor.

Energy Harvester: The AsTAR hardware platform
adapts to various energy harvesting mechanisms through a
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modular connector. The AsTAR platform accepts voltages
in the native working range of the system (e.g., harvesting
from solar panels). Energy harvesters that generates AC volt-
ages (e.g. vibration energy harvesting) or DC voltages out-
side of working voltage range of system (e.g. Thermoelectric
Generators (TEGs)) should be responsible for rectifying and
converting the voltage to the working range. The AsTAR
system makes no assumptions about the specifications of its
energy harvester, which can be drop-in replaced without any
software reconfiguration or modeling. Multiple energy har-
vesters can also be connected together to maximize useful
exploitation of available energy.

Voltage Monitoring: The AsTAR hardware platform
provides voltage measurement of the super-capacitor. Volt-
age measurement is critical to the system since it is required
by the AsTAR scheduler as discussed in Section 3.1. Natu-
rally, voltage measurement with a higher resolution provides
finer grained of adaptation control. Our lab experiments sug-
gest that a standard 10bit ADC is sufficient for this purpose.

Peripherals: The AsTAR platform supports modular ap-
plication peripherals through a generic peripheral connec-
tor. Peripherals may include sensors, actuators, or even sec-
ondary networks. Modular peripheral connection provides
flexibility to the platform so that the system can fit into dif-
ferent applications by adapting different peripherals. AsSTAR
system has no restrictions on peripheral energy demands,
and the system adapts to changing energy demands and even
changing types of connected peripherals.

Wireless Microcontroller: In principle, the AsTAR ap-
proach is compatible with any wireless micro controller unit
that offers sufficient memory to execute the system soft-
ware, and an analog channel to monitor capacitor voltage.
Naturally, given the limited energy envelope offered by en-
ergy harvesting, low power operation is critical. We se-
lected the LTC5800-IPM from Analog Devices International
[1], an IETF Class-1 microcontroller, as our wireless micro-
controller due to its industrially-proven low power opera-
tion [15] and high reliability [17].

4 Implementation

Section 4.1 describes key hardware implementation de-
tails for our prototype. Section 4.2 then describes implemen-
tation details of the AsTAR software stack.

4.1 Hardware Implementation

Figure 3 shows a finished prototype of the AsTAR device
equipped with solar panel. We selected the LTC5800-IPM
from ADI to implement our prototype AsTAR platform. The
LTC5800-IPM is an IETF Class-1 device that is realized as
a highly integrated System on Chip (SoC), it includes the
lowest power commercially available IEEE 802.15.4e radio
unit and a 7.37MHz ARM Cortex-M3 32-bit microproces-
sor with 12KB RAM and 32KB flash memory available for
applications. The LTC5800-IPM consumes 800 nA in deep-
sleep mode, 1.3 mA in active mode, 4.5 mA when receiv-
ing a packet and 9.7 mA when transmitting a packet. The
LTC5800-IPM runs the AsTAR software stack, as defined in
Section 3.2.

Our experience has shown that super-capacitors with a
low Equivalent Series Resistance (ESR) provide the best per-

Figure 3. Finished AsTAR device prototype with solar
panel as energy harvester, together with the bare circuit
board.

formance as (i.) they can be charged easily from low current
energy harvesting sources and (ii.) they can supply large cur-
rents without experiencing a significant voltage drop. This is
necessary to support radios with high transmission power or
high current sensors. Low leakage current is also essential
for charge retention. We selected carbon aerogel capacitors
for our prototype implementation in sizes from 1F to 5F.

We evaluated our prototype implementation of AsTAR
with controlled power supplies and solar energy harvesting.
Other energy harvesting techniques such as thermal, RF and
kinetic energy harvesting can be integrated with minimal
hardware changes and will be the subject of our future work.
In the case of solar tests, we use AM-5608CAR solar panel
from Panasonic-BSG, a polycrystalline panel that generates
up to 36mA at 3.3V under ideal operating conditions.

4.2 Software Implementation

We selected uC-OS/II from Micrium ! as the RTOS im-
plementation for our prototype due to its integration with the
LTC-5800-IPM and SmartMesh-IP. uC-OS/II also runs the
SmartMesh IP network stack [23], a commercial implemen-
tation of Time Synchronized Channel Hopping (TSCH) and
IPvo6.

The SmartMesh IP stack is composed of IEEE 802.15.4e
at the physical layer, TSCH at the link layer, and a
standards-based IPv6-ready IoT upper stack (6LOWPAN,
UDP). SmartMesh IP motes form a redundant low-power
wireless multi-hop mesh network. The manager is respon-
sible for building and maintaining the TSCH schedule of
the network. By continuously monitoring the network and
adapting the TSCH schedule to topological changes or differ-
ent communication requirements, a SmartMesh IP network
runs autonomously without human intervention. Matthys et
al. [15] highlights the performance of SmartMesh IP, and
demonstrates that it is possible to achieve battery lifetimes in
excess of 6 years using a 2400mAh battery, even with plug-
and-play peripheral support. The Key goal of AsTAR is to
extend this lifespan.

Uhttps://www.micrium.com/rtos/kernels/



The AsTAR runtime is compact and efficient, requiring
just 8kB of flash memory and under 8 bytes of memory for
each AsTAR peripheral being managed in order to hold the
tasks minimum rate, maximum rate and the voltage that was
observed during the last sample cycle.

5 Evaluation

In this section, we evaluate AsTAR against the require-
ments identified in Section 2.4. Demonstrating that without
any prior benchmarking and modeling, AsTAR can achieve
its sustainability goals in the face of (i.) platform hetero-
geneity and (ii.) runtime dynamism, while (iii.) incurring
minimal memory and computation overhead. These features
are evaluated firstly in controlled lab environment and then
in a real-world solar energy harvesting scenario.

For all of our experiments, AsTAR was configured with
the following parameters: Shut-off Voltage (SV) = 2.7V, Op-
timal Voltage (OV) = 3.7V. The adaptation-period was set
to 1 minute. The minimum task execution rate was set to
1 execution per adaptation-period, while the maximum task
execution rate was set to 255 executions per period. We cre-
ated test peripherals with a representative range of current
demands (1mA, 20mA and 100mA) and a fixed sensing cy-
cle of 100ms. In the case of laboratory tests, we modified the
supply current from 1mA to 4mA. In the case of real-world
validation, the available power supply was determined by the
harvesting capability of the AM-5608CAR solar panel.

5.1 Adapting to Platform Heterogeneity

We evaluate AsTAR with respect to three key dimensions
of platform heterogeneity: (i.) available power supply, (ii.)
peripheral power draw and (iii.) capacitor size. In all cases
the goal of AsTAR is to ensure consistent and sustainable op-
eration in the face of this heterogeneity and without the need
for any platform specific modeling. Figures 4 to 6 follow a
common timeline which begins at 0 minutes with motes at
3.3V, in the LV state. AsTAR then charges motes to the OV
state, which it then aims to maintain until power is shut off at
200 minutes. At that point, AsTAR detects the lack of power
and rapidly throttles task execution rates. Each graph shows
the super-capacitor voltage, which is presented on a linear
scale, and the task execution rate, which is presented on a
log scale due to its large variance. It should be noted that
our power supply hardware has an inherent inaccuracy of up
to 0.05mA in all configurations, which causes a low level of
background ‘noise’ in all of our experiments.

Heterogeneity in Power Supply: Figure 4 shows the im-
pact that different power supplies have on the operation of
ASTAR with a fixed SF super-capacitor and 20mA periph-
eral load. Charging from 3.3V to 3.7V takes 50 minutes
using a ImA supply with an average execution rate of 9.5
executions per minute, 42 minutes at 2mA with an average
execution rate of 31.9 executions per minute and 24 minutes
at 4mA with an average execution rate of 74.5 executions
per minute. It should be noted that the mapping between the
input power level and the resulting task rate is indirect as
the goal of AsTAR is only to guarantee that charge accumu-
lates during each adaptation period, rather than attempting
to guarantee the rate at which charge accumulates. The clas-
sic saw-tooth pattern of Additive Increase Multiplicative De-

crease (AIMD) [5] can be seen most clearly in the case of the
ImA and 2mA supplies, while in the case of the 4mA sup-
ply, charging is so rapid that the multiplicative decrease state
is not triggered before the Optimal Voltage (OV) is reached.
For all power supply levels, it can be seen that ASTAR en-
sures a smooth accumulation of charge and is extremely sta-
ble in the OV state, demonstrating a maximum deviation of
0.03V or 0.81% from the optimum. When power is cut off at
200 minutes, AsTAR rapidly backs off in under 5 minutes to
the minimum task execution rate of once per minute, where
it remains until power is either restored or voltage levels fall
into the Shut-off Voltage (SV) state at 2.7V. AsTAR clearly
achieves its optimization goals of acquiring and sustaining
an optimal charge in the face of 4x heterogeneity in power
supply current.

Heterogeneity in Peripheral Power Demand: Figure 5
shows the impact that different peripheral power demands
have on the operation of AsTAR with a fixed S5F super-
capacitor and a lmA power supply. Charging from 3.3V
to 3.7V takes 49 minutes using a SmA peripheral load with
an average execution rate of 26.8 executions per minute, 54
minutes with a peripheral load of 20mA using an average
execution rate of 8.7 executions per minute and 70 minutes
with a peripheral load of 100mA using an average execu-
tion rate of 2.7 executions per minute. For all peripheral test
loads, AsTAR ensures a smooth accumulation of charge and
remains stable in the OV state, with a maximum deviation of
0.02V or 0.54%. When power is cut off, AsTAR backs off
to the minimum task execution rate in a worst case of 8 min-
utes. These results show that AsSTAR remains robust in the
face of heterogeneous peripheral loads, such as those arising
from sensor, actuator and radio peripherals. In the case of
platforms which support the plug-and-play modification of
peripherals at runtime such as Flicker [9] and uPnP [24], As-
TAR will even adapt this behavior at runtime as described in
Section 5.2.

Heterogeneity in Capacitor Size: Figure 6 shows the
impact that different capacitor sizes have on the operation of
ASTAR with a fixed 20mA peripheral load and a ImA power
supply. Charging from 3.3V to 3.7V takes 41 minutes using
a 1F capacitor with an average execution rate of 16.1 exe-
cutions per minute, 48 minutes with 2.5F capacitor and an
average execution rate of 9.9 executions per minute and 55
minutes with a 5F capacitor and an average execution rate
of 7.1 executions per minute. These values approximate the
ratios of the capacitor sizes. For all capacitors, AsSTAR en-
sures a smooth accumulation of charge, stable operation in
the OV state (maximum deviation of 0.03V or 0.81%) and
rapidly throttles task execution rates to their minimum rate
within 5 minutes of power being cut off. As can be seen
from Figure 6, the major trade-off in capacitor sizes is how
quickly they discharge when power is removed, which varies
in direct proportion to their capacitance.

Discussion: As can be seen from the evaluation presented
above, AsTAR is capable of ensuring sustainable energy har-
vesting operation even in the face of heterogeneity of power
supplies, peripherals and energy storage capacity. AsTAR
ensures that devices rapidly accumulate and then maintain
an optimum charge level, adjusting quickly when power is
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system

lost. Considering the experiments performed above, it can
be seen that AsSTAR allows developers considerable freedom
in their energy harvesting designs, while providing consis-
tent behavior. This enables developers to, for example, select
larger capacitors for applications with longer typical power
outages or smaller capacitors where rapid re-charging after
power outages was considered more important. Considering
peripherals, developers are relieved form peripheral-specific
power consumption concerns. This is critical for plug-and-
play platforms [9] [24], for which new peripherals may be
developed even after platforms have been deployed in the
field. ASTAR achieves its goals without the need for any
platform-specific benchmarking or modeling, which we be-
lieve eliminates a significant barrier to entry for the building
sustainable energy harvesting systems. In Section 5.2, we
next evaluate the robustness of ASTAR in the face of runtime
dynamism.

5.2 Adapting to Runtime Dynamism

To evaluate the effect of runtime dynamism on the behav-
ior of AsTAR, we designed an evaluation scenario compar-
ing AsTAR’s scheduling performance against a theoretically
ideal scheduler: the Oracle. The Oracle knows exactly when
and how much energy is going to be available, as well as
the amount of energy one task operation consumes, so it al-
ways makes perfect scheduling decisions about task operat-
ing rates, spending exactly the same amount of energy as is
gathered from harvester. The Oracle is also free to schedule
tasks with perfect precision, allowing for arbitrary sample
periods. In this way the Oracle maintains an optimum charge
level at all times with sufficient energy income.

In this evaluation, our platform is equipped with a fixed
5F capacitor, and the Oracle is executed after all experimen-
tal data is available with perfect knowledge. The evalua-
tion starts with the system at optimum charge. We then un-
predictably modified both power demand and available sup-
ply by connecting different peripheral loads and varying the
power supply current. Afterwards we compare the schedul-
ing performance of AsTAR against the Oracle.

Figure 7 shows the result in this evaluation, and illustrates

the five phases of our experiment:

e Phase-1: The experiment begins in the OV state with
a 20mA peripheral load and a 2mA power supply. As-
TAR configures task execution rate at an average of 54.8
executions per minute, which is 1.62% less than the Or-
acle.

e Phase-2: At 50 minutes, the supply current is cut by
50% to 1mA. The Oracle immediately changes the task
execution rate, AsTAR follows quickly and throttles
task execution rates to 27.2 executions per minute on
average, which is 2.26% more. The maximum devia-
tion from the optimal voltage level during this supply-
side reconfiguration was 0.02V or 0.54%. The sub-
optimality caused by this reconfiguration is in fact too
small to distinguish from the normal variance that arises
from the 0.05mA inaccuracy of our power supply.

o Phase-3: At 100 minutes, we replace the peripheral,
reducing power demand by 75% from 20mA to SmA.
ASTAR reconfigures the task execution rate to 109.8 ex-
ecutions per minute on average, which is 0.9% less than
the Oracle, and voltage levels remain within 0.023V or
0.62% of the optimum.

e Phase-4: At 150 minutes, we apply an extreme run-
time reconfiguration by increasing the power sup-
ply by 100% from ImA to 2mA, while at the same
time increasing peripheral power demand by 1900% to
100mA. The Oracle changes the task execution rate im-
mediately, and keeps the charge level unchanged. On
the other hand, without the knowledge of incoming en-
ergy change, AsTAR schedules tasks too frequently at
the very beginning of this phase, and this leads to a volt-
age drop of 0.2V or 5.4% deviation from the optimum
voltage level. In response to the voltage drop, AsTAR
rapidly decreases the task execution rate to compensate
for the charge loss, until the charge is fully restored af-
ter 30 minutes. Although task execution rates are tem-
porarily higher at beginning, AsTAR quickly resched-
ules at a lower average execution rate during the voltage
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drop period, and the average rate over the entire phase is
11.9 executions per minute, which is 4.39% more than
the Oracle.

e Phase-5: At 200 minutes, we increase the power
supply by 100% from 2mA to 4mA, while keeping
the 100mA load constant. AsTAR reconfigures the
task execution rate to 25.2 executions per minute with
minimal deviation from the optimal, which is 3.28%
more than the Oracle. It should be noted that with a
larger power supply and demand variance in voltage
level is greater at 0.048V or 1.3%.

Discussion: Considered in sum, Figure 7 shows that
ASTAR reacts rapidly to runtime dynamism, ensuring that
charge levels remain optimum for the vast majority of the
experiment timeline. Throughout the experiment, AsTAR is
remarkably robust to changes in power supply and demand,
recovering quickly even in the case of very large runtime re-
configurations that impact both the supply and demand side
of the energy equation. Comparing to the Oracle which of-
fers ideal performance, AsTAR may over-shoot or under-
shoot at the beginning of each phase, but it quickly reacts to
the situation and restores the optimum charge, and remains
close to the ideal task execution rate on average. As the task
scheduling problem is to find an optimum task rate, AsSTAR
may under, or over-shoot the Oracle at a given time.

The results of our evaluation firstly validate our strategy
of focusing upon changes in stored charge, rather than the
supply or demand side and secondly eliminates the signif-
icant problem of dynamism for developers, even in cases
where peripherals may change at runtime. Section 5.3 ap-
plies ASTAR in a real-world solar energy harvesting case
study in order to validate that these properties hold outside
of the lab.

5.3 Real World Validation

This section evaluates ASTAR in a real-world energy har-
vesting scenario. We deployed a solar powered AsTAR de-
vice running the software stack next to a window of our
office building for a period of two days. This device is
equipped with a SF capacitor and a sensing peripheral that
consumes 100mA for 100ms when sampling. In addition to
monitoring capacitor voltage and task scheduling rates, we
also logged light levels on a separate device using a standard
light sensor that is deployed at the same location. It should
be noted that this light sensor provides only an indication
of available solar energy rather than a one-to-one mapping
of the energy produced by the solar panel. As our office
is surrounded by other buildings, direct sunlight is available
for only a small part of the day, with reflected light for the
remainder of the time. During the two days of the experi-
ment the weather was predominantly cloudy with intermit-
tent sunny periods.

Figure 8 shows the results of this experiment. Capaci-
tor voltage is plotted at the top, followed by task scheduling
rates in the middle and light levels at the bottom. Capaci-
tor voltage is plotted on a linear scale. Task rates and light
levels were plotted on a log scale due to their large variance.
This figure again shows that AsTAR achieves its goals of ac-

quiring and sustaining an optimal charge whenever sufficient
energy is available, and even in the face of large fluctuations
in available energy. We now highlight interesting elements
from our two-day experiment.

e The sun rises at around 7AM on both days. After a
night of darkness, the mote is in the SV mode in order to
preserve operation and no application tasks are sched-
uled. As the sun rises, light levels quickly increase to
around 1000 lux and the capacitor charges past the SV
threshold.

o Indirect sunlight: 1.V mode begins at around 10AM
on both days as the mote voltage rises past the shut-off
threshold of 2.7V. The AsTAR scheduler applies AIMD
to reach an optimal task rate of approximately 2.5 exe-
cutions per minute while the capacitor charges in some-
what consistent indirect sunlight.

o Direct sunlight falls upon the panel at around noon
for a period of between one to two hours, depending
on weather conditions. This is clearly visible in the
light level graph, which increases by more than an or-
der of magnitude from under 1000 lux to over 15000
lux. This causes the mote to rapidly accumulate charge
and reach the optimum level of 3.7V. AsTAR handles
this by rapidly increasing task rates to 41 executions
per minute, which sustains the voltage level at the opti-
mum value of 3.7V, with a variance during this period of
0.07V or 1.9%. The larger variance during this period
arises due to clouds unpredictably obscuring the sun.

o Falling light levels: When the period of direct sunlight
ends in the early afternoon, light levels again fall by
more than an order of magnitude from around 15000
lux to 1000 lux, which briefly pulls the voltage below
OV, causing AsTAR to quickly adapt the task rate to
an average of around 2.5 executions per minute. This
adaptation is sufficient to ensure a deviation of less than
0.04V or 1.1% from the optimum.

o Increased reflected light on day two occurs due to high
white clouds from late in the afternoon. Light levels
more than double from 1000 lux to 2400 lux. This
causes the voltage to briefly enter the HV zone and As-
TAR applies MIAD to increase task rates to 4.6 execu-
tions per minute. This compensates for the increased
light levels, resulting in a deviation of less than 0.02V
or 0.55% from the optimum.

e The sun sets around 7PM on both days, causing the
light level to quickly drop towards O lux, which prevents
the accumulation of charge. AsTAR reacts by rapidly
cutting the task rate using Multiplicative Decrease to
the developer-specified minimum of 1 task execution
per minute.

o Night time power saving begins between midnight and
1AM as the capacitor voltage falls below 2.7V, causing
ASTAR to enter the SV mode until the sun rises again
and charges the capacitor past the LV threshold. As can
be seen from the figure, disabling the task significantly
slows the discharge rate of the capacitor, enabling the
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Figure 8. A section of 2 full days from the real-world deployment. The AsTAR device is equipped with a 5F capacitor, a
peripheral that demands 100mA current, and it uses only solar energy harvested from indoor location. The three curves
each shows the capacitor voltage, the application task rate, and light level recorded by light sensor.

device to survive 12 hours of darkness.

In all phases of the experiment, AsTAR behaved as ex-
pected. During this evaluation, it remained remarkably ro-
bust against the radical changes in available energy lev-
els that arise due to specifics of the deployment location.
This is accomplished without the need for any benchmark-
ing and modeling. Furthermore, while solar modeling ap-
proaches [22] [3] provide an accurate prediction of solar en-
ergy at a given location and time-of-year, they cannot take
into account deployment specifics such as the impact of
buildings and local weather.

5.4 Overhead

This section isolates the overhead of AsTAR in relation
to the underlying software stack in terms of: memory, com-
putation and energy. As discussed in Section 3.1 and shown
in Listing 1, the AsTAR scheduler is extremely lightweight.
In each adaptation cycle, it only executes a small number
of single-cycle instructions: comparison, increment, decre-
ment, multiply by 2 (i.e. left shift), and divide by 2 (shift
right) and one analog read operation.

Table 1 shows the time and charge required to com-
pute adaptations in each state. As the execution period was
smaller than the temporal resolution of our laboratory equip-
ment, we executed each adaptation 10 times and provide the
average. The associated charge consumption is based upon
the power numbers specified in the LTC5800 data sheet. The
primary power cost arises from the active time of the proces-
sor, during which it consumers 1.3mA.

The AsSTAR software runtime requires only 8kB of flash
memory and 8 bytes of RAM for each task being managed.
Considered in sum, AsTAR is extremely efficient and has
very limited overhead in terms of computation, energy and
memory.

Table 1. Time and charge required for processing AsSTAR
scheduler

Time (us) Charge (uC)

Shut-off state 21.70 0.028

Low Voltage state 104.75 0.136
Optimum Voltage state 87.80 0.114
High Voltage state 121.70 0.158
Average 83.99 0.109

6 Conclusions and Future Work

This paper introduced AsTAR, a novel approach to
building energy harvesting Internet of Things applications.
AsTAR contributes a (i.) simple, yet effective energy-
aware task scheduling scheme for on IETF Class-1 devices
and (ii.) a reference platform for experimentation with sus-
tainable energy harvesting applications.

Our evaluation shows that AsTAR is capable of reliable
and sustainable operation under both laboratory tests and
a real-world solar energy harvesting case-study. Our self-
adaptive task scheduling approach is an elegant, simple and
robust approach to optimizing task schedules in the face of
heterogeneity and changing operational conditions.

It is important to note that AsTAR achieves these bene-
fits in a fully autonomic manner with zero modeling prior
to device deployment and extremely low runtime overhead.
Considered as a whole, we believe that the features of As-
TAR represent a significant reduction in the complexity of
writing energy-aware [oT applications for energy harvesting
platforms. We note however, that AsTAR’s applicability is
limited to those tasks that can be independently scheduled.

Our future work will follow three main scientific tracks:
Firstly, by extending AsTAR’s task management concept
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from the application layer, deeper into the OS and network
stack, we aim to provide greater adaptability to changing en-
vironmental conditions and application demands. For exam-
ple, by modifying network configurations and routes to max-
imize the role that is played by nodes with abundant energy.
Secondly, we plan to extend AsTAR with support for more
energy harvesting techniques, including thermal, RF and ki-
netic energy. Finally, we will develop techniques that allow
developers to prioritize the execution of tasks.

Complementing these scientific tracks, we plan an
engineering track, which will establish a large-scale AsTAR
testbed that we will make available to the IoT research
community in order to accelerate the development of energy
harvesting algorithms, tools and applications.
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