
Supporting the Adaptive Deployment of Modular Applications
in Cloud-Edge-Mobile Systems

Foivos Pournaropoulos, Christos D. Antonopoulos, Spyros Lalis
Department of Electrical and Computer Engineering

University of Thessaly

{spournar, cda, lalis}@uth.gr

Abstract
We introduce Fluidity, a framework enabling the flexible

and adaptive deployment of modular applications in systems
comprising cloud, edge, and mobile IoT nodes. Based on
a declarative description of application requirements, Fluid-
ity plans and executes an initial deployment of application
components in the cloud-edge-mobile continuum. At run-
time, Fluidity monitors resource availability and the position
of mobile nodes, and adapts the deployment of the applica-
tion accordingly, without any intervention from the applica-
tion owner or system administrator. Notably, Fluidity allows
applications to provide their own deployment and adaptation
policies and to switch between different policies at runtime,
while the application is running. We discuss the design and
implementation of Fluidity in detail and provide an evalua-
tion using a lab testbed, where the mobile node is a simulated
drone. Our results show that the core mechanisms of Fluidity
can adapt the application at reasonable overhead.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability

and serviceability; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed applications

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Microservices, Edge Computing, Mobile Computing,

Flexible Deployment, Runtime Adaptation, IoT, Drones

1 Introduction
An increasing number of applications are no longer re-

stricted to the cloud but also involve mobile IoT devices,
such as smartphones, and vehicles like cars or even au-
tonomous drones. In this case, edge computing can improve

the application’s quality of service (QoS) by moving com-
putations closer to the points where data is produced, while
leading to better overall system performance and stability,
as it reduces data traffic and resource pressure to the cloud.
However, in order to effectively harness the available edge
resources, one needs to support flexible and adaptive deploy-
ment and orchestration, taking into account the changing po-
sition of the mobile nodes.

In this work, we introduce Fluidity, a framework that
enables adaptive application deployment and orchestration
across the continuum. Our mechanism is built as an ex-
tension of Kubernetes [17], which is used as the underlying
mechanism for the basic pod/container deployment and mon-
itoring. Going beyond the standard functionality of Kuber-
netes, Fluidity supports adaptive node selection and applica-
tion deployment for mobile and edge computing, with trans-
parent redirection of application traffic over ad-hoc WiFi
links, driven by application-specific add-on policies.

The main contributions of this paper are: (i) We introduce
a framework for the flexible and adaptive deployment and
orchestration of applications in the cloud-edge continuum,
with a focus on mobile IoT nodes. (ii) Our design separates
the core (re)deployment mechanism from the logic that takes
the placement decisions, making it possible for the appli-
cation to provide different policies using a structured inter-
face. (iii) We quantify the policy-independent overheads of
the core framework mechanisms for the actual adaptation of
application deployment, application traffic redirection, and
policy change, showing that they are sufficiently small to
support applications that do not have strict real-time require-
ments.

The rest of the paper is structured as follows. Sec-
tion 2 introduces a motivating application example. Sec-
tion 3 presents the design and implementation of the Fluidity
framework, while Section 4 provides the evaluation. Sec-
tion 5 discusses related work. Finally, Section 6 concludes
the paper.

2 Application running-example
We use a simple application example throughout the pa-

per to motivate the problem and illustrate the functionality
of the Fluidity framework. Note that Fluidity is application-
independent and can support the adaptive deployment of
complex applications with different characteristics.

The application consists of three components. The



Figure 1. Placement of application components and dy-
namic relocation of the ImageChecker between cloud and
edge with traffic redirection between 4G and WiFi.

MobileViewer takes pictures and sends them to the Im-
ageChecker, which processes them to detect objects of in-
terest. If objects are detected, the ImageChecker sends the
picture to the DataStore for long-term storage and possibly
additional processing. In essence, the ImageChecker and
DataStore are services that are invoked by the MobileViewer
and ImageChecker, respectively.

We wish to deploy and run the application on top of a dis-
tributed system spanning the cloud-edge-mobile continuum,
which includes a mobile node equipped with a camera (e.g., a
drone), an edge node offering computing resources to the ap-
plication, and a node in the cloud. The MobileViewer needs
to run on the mobile node to access the camera, and the Data-
Store runs in the cloud to have access to ample storage space.
However, the ImageChecker can run either on the edge node
or in the cloud. For the sake of the example, we assume
that it is desirable to dynamically relocate the ImageChecker
between the cloud and the edge, depending on the location
of the node hosting the MobileViewer component, with the
application-level traffic between the interacting components
being redirected accordingly, as illustrated in Figure 1. Run-
ning the ImageChecker at the edge, close to the mobile node
hosting the MobileViewer, not only reduces the pressure on
mobile communication and cloud resources but can also im-
prove the interaction between these components.

3 Design and Implementation
The Fluidity framework is designed to support such a flex-

ible and adaptive deployment of applications in the contin-
uum. We start by briefly describing the application model
and software architecture of Fluidity. Then, we discuss the
internal operation of the framework in more detail.

3.1 Application model
We consider modular applications consisting of distinct

components that can be separately deployed on different
nodes of the system. Each component is provided by the
application owner in the form of a Docker container [4]. Ap-
plication deployment is driven through a structured descrip-
tion (in YAML format), listing the application components,

their desired placement in the continuum, their resource re-
quirements, and the interactions between them. In particular,
to guide application placement in the continuum, each com-
ponent can be targeted for the cloud, edge, or mobile nodes,
via explicit labels in the application description. A compo-
nent can also be labeled as hybrid, indicating that it may be
placed in the cloud or at the edge.

Fluidity supports a flexible deployment for both edge and
hybrid components: it initially creates an instance on a suit-
able host and can subsequently relocate it on another host
based on the current location of mobile nodes hosting other
application components. Moreover, Fluidity supports the dy-
namic change of the policy used to plan and adapt applica-
tion deployment. The current implementation supports the
relocation of stateless application components/services, by
restarting the container on another host without any special
state transfer (there is no live container migration).

3.2 Software architecture
Figure 2 depicts the software architecture of the Fluidity

framework for an indicative cluster including a mobile IoT
node (drone), an edge node, and a cloud node for hosting
application components. The control plane runs in a separate
node, also in the cloud. All nodes are connected through a
VPN. The network connection of the stationary nodes is via
an Ethernet interface, while the mobile node uses a 4G link.
This system configuration is intentionally simple for the sake
of the example. In the general case, the system may include
several mobile, edge, and cloud nodes.

The Fluidity Controller resides in the cloud, and is re-
sponsible for processing application deployment requests,
finding a plan with a suitable component-to-node mapping,
and executing the deployment plan. It also monitors the state
of the system and, if needed, adapts the current deployment.
The actual deployment of application components on the se-
lected hosts (as pods) is done via K3S [11], while all moni-
toring information is received via the Kubernetes API. How-
ever, the adaptive selection of the target hosts and network
connections as a function of the global system status is done
by the Fluidity Controller.

Every node that can act as a host for application compo-
nents runs the Fluidity Agent. This registers the node with
Kubernetes by sending a corresponding resource description,
keeps track of the node’s state and resource availability, and
sends updates to the Kubernetes registry. If the node is mo-
bile, the Agent also periodically sends to Kubernetes its cur-
rent position. The Agent runs on the side of the Kubelet that
takes care of the local deployment of the pods containing the
application components. Mobile and edge nodes with a WiFi
interface also run the Net-Proxy. This implements the redi-
rection of application traffic from the default data path (via
4G and the Internet) over a WiFi link between these nodes.

3.3 Operation of the Controller
As shown in Figure 3, the Controller has two main

threads, the Scheduler, and the Monitor, which interact
through a notification queue and in-memory data structures
capturing the application description and current deploy-
ment. The Scheduler receives from Kubernetes application
deployment request events, initializes and updates its inter-



Figure 2. Fluidity architecture and cluster configuration.

nal data structures, selects suitable hosts, and then deploys or
removes application components via Kubernetes. The Mon-
itor periodically queries Kubernetes to get the status of the
deployed pods and available system resources. If significant
changes occur, it alerts the Scheduler by posting events in the
notification queue, to decide how to adapt the deployment.

The policy for adapting the deployment is abstracted via
the analyze() and plan() functions. The former is invoked
from within the Monitor to analyze the status of pods and
system resources and decide whether to generate a notifi-
cation for the Scheduler. The latter is invoked from within
the Scheduler to process application deployment requests as
well as the notifications generated by the Monitor, in order
to produce an updated component-to-node mapping.

Notably, the above policy functions are not hardwired in
the Fluidity framework. They are provided as part of the
application description, which can be changed at runtime by
the user or the application itself. Thus, each application can
come with its own deployment and adaptation policies, and
dynamically switch between them during execution without
having to stop/restart or suspend/resume.

3.4 Initial deployment
The procedure for initiating application deployment is,

briefly, as follows. The user (administrator) submits an ap-
plication deployment request to Kubernetes, which notifies
the Scheduler thread of the Controller. The Scheduler re-
trieves/parses the application description and initializes some

Figure 3. Internal structure of the Fluidity Controller.

internal data structures as well as the policy-specific func-
tions. Then, it retrieves from Kubernetes the current state
of the cluster, updates the corresponding data structures, and
invokes the plan() function to produce the initial deployment
plan. Finally, the Scheduler prepares the pod files for the ap-
plication components, deploys the pods on the selected hosts,
and starts the Monitor thread.

For edge or hybrid components, the respective container
is proactively sent to every edge node that can potentially act
as a host for it, to accelerate placement adaptations that may
be decided in the future. However, only one live instance of
the edge / hybrid component is actually created in the system,
on the host that is selected by the policy.

3.5 Adaptation of deployment
Fluidity can support a wide range of deployment adapta-

tion scenarios to handle node mobility, the addition and re-
moval of nodes in/from the cluster, and the failure of a pod
running an application component. Moreover, the user or
the application can modify the deployment requirements and
policy. To illustrate how Fluidity works, we focus on the
application described in Section 2 and discuss the adaptive
deployment of the hybrid component (ImageChecker).

Figure 4 shows the basic steps of the adaptation process,
for the case where the hybrid component is relocated from
the cloud to the edge. The Agent of the mobile node peri-
odically sends its location to Kubernetes. This is captured
by the Monitor, which updates the Controller data structures
and invokes the analyze() function to decide whether to no-
tify the Scheduler. In this case, the Scheduler invokes the
plan() function to produce an updated component-to-node
mapping (if any). If it is indeed decided to change the cur-
rent deployment, the Scheduler generates a new pod file for
the hybrid component and target node, and implements the
adaptation, by deploying the new pod on the selected host
and then removing the unwanted pod from the old host.

3.6 Redirection of application traffic
Fluidity exploits the ability of mobile nodes to interact di-

rectly with edge nodes via wireless communication (such as
WiFi), rather than via the default communication path (4G
and the Internet). To this end, additional actions are per-
formed when the hybrid component relocates (i) from the
cloud to an edge node, (ii) from an edge node to the cloud,
or (iii) between two edge nodes.



Figure 4. Deployment adaptation by relocating a hybrid
component (ImageChecker) from cloud to edge.

In the first case, shown in Figure 4, the Scheduler in-
structs the Net-Proxy of the mobile node to activate its WiFi
interface and connect to the wireless network of the edge
node (sending the necessary information, such as the net-
work SSID and key). This is done before generating and
deploying the pod file on the edge node so that the WiFi
connection delay overlaps with the component deployment
delay. Also, when the old pod is removed, the Scheduler
instructs the Net-Proxy to redirect application traffic to the
instance on the edge node over WiFi. In turn, the Net-Proxy
of the mobile node interacts with the Net-Proxy of the edge
node (not shown in the figure) to jointly set/adjust the routing
rules associated to the hybrid component.

Conversely, when the hybrid component relocates from
the edge back to the cloud, the Scheduler instructs the Net-
Proxy to restore the routing rules and disconnect from the
edge WiFi network. As above, this is done after removing
the component instance from the previous host. A similar
process is followed when the hybrid component is relocated
between two edge nodes. However, in this case, the Net-
Proxy needs to disconnect from the WiFi of the old edge
host, before it can connect to the WiFi of the new edge host.

4 Evaluation
We evaluate Fluidity using a system/cluster configuration

in the lab, which includes an embedded mobile node, an edge
node and a cloud node. Our experiments focus on the adapta-
tion of application deployment performed by Fluidity and the
respective overhead. They are not designed to quantify how
the movement of the mobile node affects the performance of
its wireless link to the edge node, as this is not related to the
mechanisms of the Fluidity framework.

4.1 Test application and cluster configuration
The test application used in our experiments is the one

described in Section 2. We let the MobileViewer take a pic-
ture and invoke the ImageChecker to process the image, in
an endless loop. Thus, the actual invocation rate during ap-
plication execution depends only on the invocation delay.

The cluster configuration is similar to that of Figure 2.
The mobile IoT node is represented by a Raspberry Pi 3
Model B (RPi), with a quad-core ARM Cortex-A53 CPU
(@1.2 GHz) with 1GB of memory, which we regularly use
as an on-board companion computer on a quadcopter drone.
The RPi is connected to the SITL configuration of Ardupi-
lot [1], which simulates the drone dynamics. The edge node
is a VM with 2 cores and 5GB of memory, running on a lap-
top with a dual-core Intel Core i5-7200U CPU (@2.5GHz).
Finally, the control plane and cloud node are VMs with 4
cores and 16GB memory, running on physical nodes with
Intel Xeon E5-2630 0 (@2.30GHz) and Intel Xeon E5-2620
v2 (@2.10GHz) CPUs in the cluster of our department.

Connectivity with the control plane is via a VPN, over
4G for the drone (RPi) and over Ethernet for the edge node
(laptop). This also serves as the default connectivity path for
application-level traffic. The wireless link between the RPi
and the laptop, activated when the ImageChecker component
runs on the latter, is over ad-hoc WiFi.

All nodes hosting application components run the Docker
runtime, the Kubelet and the Fluidity Agent. The RPi and
laptop also run the Fluidity Net-Proxy. The Agent on the RPi
interacts with the autopilot subsystem to retrieve the current
position of the drone, via Dronekit [5]. Notably, the RPi runs
exactly the same software when mounted on a real drone, the
only difference being that the communication with the au-
topilot system is over serial. In previous tests [7], not related
to Fluidity, we have verified that the SITL setup reproduces
the behavior of a real quadcopter drone, including the time
to take-off, move between waypoints and land.
4.2 Test scenario

Figure 5 illustrates the flight scenario used to evaluate our
implementation. More specifically, the (virtual) drone moves
between two locations in a straight line at a constant speed,
while the edge node is (virtually) placed in the mid-point of
this path. The start and end points of the drone’s path are set
300 meters apart, while the WiFi range of the drone and edge
node is set to a radius of 50 meters.

Each run includes several round-trips, from the start to the
end point and back, so in each round-trip the drone enters the
range of the edge node twice. Note that this scenario, despite
being simple, is equivalent to larger mission scenarios, where
the drone operates in a wider region overflying areas close to
an edge node followed by areas where the drone is not within
the range of any edge node.

The main purpose of the evaluation is to capture the over-
head of the core Fluidity mechanism, without focusing on
the effectiveness of the adaptation policy. To this end, we
employ the simple adaptation policy of placing the instance
of the ImageChecker to the edge node whenever the drone
hosting the MobileViewer is in its range. More specifically,
analyze() generates a notification to the Scheduler when
the drone enters or exits the area covered by the WiFi of



Table 1. Major components of adaptation overhead.
Name Description
(1) Resource update Time needed to update resource status.
(2) Notification deci-
sion

Time needed by notify() to decide whether
to notify the Scheduler.

(3) Notification Time needed for the Scheduler to receive
the notification of the Monitor.

(4) Planning Time needed by plan() to produce the new
component-to-node mapping.

(5) Find migration tar-
get

Time needed to identify the component(s)
to be migrated.

(6) WiFi connection
request

Time needed to check if the edge node has
WiFi and ask the drone to connect to it
(cloud-to-edge migration).

(7) WiFi connection Time needed for the drone to connect to
the WiFi network of the edge node (cloud-
to-edge migration).

(8) Pod-file creation Time needed to build the pod-related files
for new component instances.

(9) Pod deployment Time needed to deploy the new pod &
confirm this is running.

(10) Pod removal Time needed to remove the unwanted pod
& confirm this has terminated.

(11) Redirection Time needed to redirect application traffic
(from 4G to WiFi or vice versa, depending
on migration direction).

(12) WiFi disconnec-
tion

Time needed for the drone to disconnect
from the WiFi network of the edge node
(edge-to-cloud migration).

(13) Policy switch Time needed for the Controller to install a
new policy.

Table 2. Application metrics.
Name Description
(1) Invocation delay The time needed for the MobileViewer to

invoke the ImageChecker and get a re-
sponse.

(2) Invocation failure
ratio

The number of failed invocations to the
total number of invocations attempted
within a 10-second time window at each
transition point.

the edge node (specified in the node resource description),
while plan() produces the adapted deployment for the Im-
ageChecker component.

4.3 Metrics
To quantify the overhead of the framework, we monitor

the major delay components, summarized in Table 1. All
delays are measured at the Controller, except (7) and (12)
which are measured on the drone node (RPi). As shown in
Figure 4, (7) overlaps with (8)-(10) as the WiFi connection
is performed by the Net-Proxy in parallel to the deployment
of the new ImageChecker pod on the edge node and the re-
moval of the old pod from the cloud. Note that there is no
entry for a WiFi disconnection request from the Scheduler to
the drone’s Net-Proxy. As discussed in Section 3.6, there
is no separate interaction for this. Instead, when the Im-
ageChecker migrates from the edge back to the cloud, the
Net-Proxy disconnects from the WiFi of the edge node once
it confirms the application traffic redirection to the Sched-
uler. Since this is done asynchronously, the WiFi disconnec-
tion delay does not affect the actual adaptation time.

We also record the impact of adaptation to the behav-
ior/performance of the application through the metrics listed

Figure 5. Test scenario, leading to repeated relocations of
the ImageChecker between cloud and edge.

Figure 6. Breakdown of adaptation overhead. Note that
the WiFi connection delay fully overlaps with the delay
for pod file creation and pod deployment.

in Table 2. Both metrics are recorded at the MobileViewer
component. Note that some of the invocations of the Mobile-
Viewer to the ImageChecker may fail and this is captured via
the second metric. The reason for such failed invocations is
that the old instance of the ImageChecker may still be pro-
cessing a previous invocation when it is removed.
4.4 Results

We measure the adaptation overhead for a total of 60 re-
locations of the ImageChecker component from the cloud to
the edge and back, performed in 15 consecutive round-trips.
Figure 6 shows the average recorded delay, broken down to
the individual actions that are performed to relocate the hy-
brid component from the cloud to the edge and vice versa.
Note that the WiFi connection delay applies only when the
component relocates from the cloud to edge, and fully over-
laps with pod file creation and deployment. The WiFi dis-
connection delay applies for the reverse relocation, from the
edge to the cloud, but does not affect the actual adaptation
time.

Clearly, the most significant overhead comes from the pod
deployment and application traffic redirection, accounting
for 46% and 43% of the delay, respectively. The overhead of
the (intentionally simple) policy is merely 1.4%. The aver-
age adaptation delay, excluding the WiFi disconnection that
is performed asynchronously, is roughly 3.7 seconds in total.
While quite significant, this is still acceptable for applica-
tions that do not have tight real-time requirements.



0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160

In
vo

ca
ti

o
n

 D
e

la
y 

(s
e

co
n

d
s)

Mission Time (seconds)

in range of 
edge node

Figure 7. Invocation delay during an indicative pass. The
zero value represents a failed invocation.

We have also measured the time needed to change the pol-
icy, while the application is running. The average delay is
about 25 milliseconds over 50 policy switches. This allows
the application to switch policies frequently, e.g., to adopt
different strategies at various phases of execution/locations
of the mobile node, or to continually improve its strategy
through machine learning methods.

Figure 7 plots the invocation delay between the Mobile-
Viewer and the ImageChecker during an indicative trip from
the start to the end point. This data is collected from the
respective Pod logs after the test mission completes. The
shaded area marks the time window when the drone is in
range of the edge node. Thanks to the adaptation by Flu-
idity, the ImageChecker relocates to the edge node, lead-
ing to a sharp drop of the invocation delay. Fluctuations of
invocation delay during each phase of the experiment (Im-
ageChecker in cloud (0-55], edge (55-110], cloud (110-160]
respectively) are due to the dynamically varying character-
istics of the 4G and ad-hoc WiFi networks. Over all ex-
periments including more than 500 invocations, the average
edge invocation delay is 1.89 seconds vs 2.84 seconds for
the cloud, an improvement of 33%. Notably, the actual com-
putation takes about 0.54 seconds on the laptop vs 0.30 in
the cloud VM (almost 2x faster), but the shorter data trans-
fer time over WiFi vs 4G makes the difference in favor of
the edge. Of course, edge computing would be even more
beneficial with a more powerful edge node.

The zero value in Figure 7 (time point 110) denotes a
failed invocation. Such failures may occur at the transi-
tion points where the relocation of the ImageChecker takes
place. The invocation failure ratio at these points (within a
10-second window around the transition points) is 14.4%.
Note, however, that such failures are not fatal. Given that
ImageChecker embodies a stateless service, the application
can recover from a failed invocation simply by repeating the
attempt.
5 Related Work
5.1 Offloading and flexible deployment

The work in [19] introduces the concept of service of-
floading from mobile devices to powerful computers operat-
ing at the edge, using VM virtualization to host the respec-
tive services. Offloading occurs whenever the mobile node
is in the proximity range of edge nodes. [18] focuses on
offloading containerized computations of IoT applications

to the gateways, as the latter usually remain underutilized.
The authors leverage a centralized cloud-based approach for
resource orchestration and management. Further, [2] intro-
duces trusted environments for container operation. How-
ever, the authors in [19, 2] focus on automating the run-
time synthesis of the execution enclaves to implement ser-
vices, rather than the run-time management of prebuilt appli-
cation components in the form of containers. With respect to
[18, 2], apart from supporting the initial application deploy-
ment, our main focus is on adapting it at runtime. Ad-hoc
computation offloading from a drone to edge servers is stud-
ied in [12]. However, it assumed that all servers already have
the required service pre-installed.

Some works, which explicitly target drone orchestration
and management, place all application logic in the cloud
[20, 13]. Others enable the native execution of container-
based drone applications [9, 8]. Our work extends these ef-
forts, aiming at the adaptive end-to-end deployment for ap-
plications spanning the entire edge-cloud continuum, rather
than dealing only with the part that resides on the drone.

In [14], the authors support the adaptive, cross-cloud de-
ployment of applications using conventional and serverless
components. The deployment is repeated whenever perfor-
mance drifts from requirements. The framework in [15]
supports multi-cloud applications consisting of components
with various service levels. Deployment readjustment is sup-
ported by complex rearrangement rules that are activated by
events and are converted to workflows, which can be mod-
ified in the course of time to optimize the used plan. [3]
focuses on adaptive application deployment across multiple
cloud providers. Information about the application’s compo-
nents and the interactions between them is captured using a
graph structure. Compared with these works, we focus on
cloud/edge applications (rather than multi-cloud or hybrid
cloud/serverless), including mobile nodes such as drones,
and we introduce deployment adaptation due to mobility.

In previous work [7], we explored flexible application de-
ployment with special focus on hiring drones on-demand and
allowing the application to control the drone’s path through
suitable directives. While there is a similar concept of hybrid
components, application deployment is static and a greedy
approach is adopted by creating live instances on every edge
node that is near the (estimated) path of the drone, also keep-
ing an instance in the cloud as a fall-back option. Fluidity
supports a more adaptive and resource-efficient deployment
of hybrid components by creating a single instance that is dy-
namically relocated on different hosts based on the position
of the mobile node. Moreover, Fluidity separates the core
deployment mechanisms from the policy that makes deploy-
ment and adaptation decisions, which is provided as part of
the application description and can be changed at runtime.
This allows policy developers to experiment with different
policies, providing a significantly larger degree of extensi-
bility than the previous framework.
5.2 Network management

The 5G architecture adopts a service-oriented view of the
network to satisfy different and possibly contrasting require-
ments of a variety of applications [21]. While 5G can benefit
mobile and drone-based applications, it necessitates exten-



sive deployments by network operators that will take quite
some time to achieve, particularly for 5G-core which sup-
ports low-latency applications. In contrast, Fluidity can ex-
ploit different wireless networking technologies already sup-
ported by edge nodes in a transparent way for the application.

In Kubernetes, it is common to connect application com-
ponents through service meshes, like Istio [10], which sepa-
rate the application business logic from the communication
logic by creating an abstracted application-aware overlay.
These meshes, however, introduce extra overhead due to the
injection of sidecar proxy containers in the application pods,
which is more noticeable in resource-constrained environ-
ments. On the other hand, Fluidity supports traffic redirec-
tion over ad-hoc wireless network interfaces, allowing appli-
cations to benefit from the physical proximity of edge com-
puting resources while enjoying higher bandwidth and lower
latency vs the default path of mobile connectivity.

Recently, edge-oriented Kubernetes derivatives [16, 6] al-
low the application to take advantage of various networking
technologies. These approaches are useful, yet they shift the
responsibility of connectivity management to the application
developer. In contrast, Fluidity can transparently exploit dif-
ferent ad-hoc networking capabilities under the hood.
6 Conclusion

We have presented Fluidity, a framework for the adaptive
deployment of modular applications in systems that include
cloud, edge and mobile nodes. Moreover, Fluidity allows the
application to provide its own adaptation policies and switch
between them at runtime. The core mechanisms of the Fluid-
ity framework have a non-negligible but still acceptable over-
head, allowing a wide range of applications that do not have
tight real-time requirements to exploit edge computing and
networking resources in a flexible way.
Acknowledgments

This work has received funding from the Horizon Europe
research and innovation programme of the European Union,
under grant agreement no 101092912, project MLSysOps.
7 References

[1] Ardupilot SITL. http://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html.

[2] K. Bhardwaj, M.-W. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and
K. Schwan. Fast, scalable and secure onloading of edge functions
using Airbox. In IEEE/ACM Symposium on Edge Computing, pages
14–27, 2016.

[3] J. Carrasco, J. Cubo, and E. Pimentel. Towards a flexible deployment
of multi-cloud applications based on TOSCA and CAMP. In Euro-
pean Conference on Service-Oriented and Cloud Computing, pages
278–286, 2014.

[4] Docker. https://www.docker.com/.
[5] Dronekit. http://dronekit.io/.
[6] A. Ferreira, E. V. Hensbergen, C. Adeniyi-Jones, E. Grimely-Evans,

J. Minor, M. Nutter, L. E. Peña, K. Agarwal, and J. Hermes.
SMARTER: Experiences with cloud native on the edge. In USENIX
Workshop on Hot Topics in Edge Computing (HotEdge), 2020.

[7] N. Grigoropoulos and S. Lalis. Fractus: Orchestration of Distributed
Applications in the Drone-Edge-Cloud Continuum. In IEEE 46th An-
nual Computers Software and Applications Conference (COMPSAC),
pages 838–848, 2022.

[8] S. He, F. Bastani, A. Balasingam, K. Gopalakrishnan, Z. Jiang, M. Al-
izadeh, H. Balakrishnan, M. J. Cafarella, T. Kraska, and S. Madden.
Beecluster: drone orchestration via predictive optimization. In Inter-
national Conference on Mobile Systems, Applications and Services,
pages 299–311, 2020.

[9] A. V. Hof and J. Nieh. AnDrone: Virtual drone computing in the
cloud. In Eurosys, pages 6:1–6:16, 2019.

[10] Istio service mesh. https://istio.io/.
[11] K3S. https://k3s.io/.
[12] T. Kasidakis, G. Polychronis, M. Koutsoubelias, and S. Lalis. Re-

ducing the mission time of drone applications through location-aware
edge computing. In IEEE International Conference on Fog and Edge
Computing (ICFEC), pages 45–52, 2021.

[13] A. Koubâa, B. Qureshi, M.-F. Sriti, A. Allouch, Y. Javed, M. Alajlan,
O. Cheikhrouhou, M. Khalgui, and E. Tovar. Dronemap Planner: A
service-oriented cloud-based management system for the Internet-of-
Drones. Ad Hoc Networks, 86:46–62, 2019.

[14] K. Kritikos and P. Skrzypek. Towards an optimized, cloud-agnostic
deployment of hybrid applications. In International Conference on
Business Information Systems, pages 435–449, 2019.

[15] K. Kritikos, C. Zeginis, E. Politaki, and D. Plexousakis. Towards the
modelling of adaptation rules and histories for multi-cloud applica-
tions. In International Conference on Cloud Computing and Services
Science, pages 300–307, 2019.

[16] KubeEdge. https://kubeedge.io/.
[17] Kubernetes. https://kubernetes.io/.
[18] P. Liu, D. Willis, and S. Banerjee. Paradrop: Enabling lightweight

multi-tenancy at the network’s extreme edge. In IEEE/ACM Sympo-
sium on Edge Computing, pages 1–13, 2016.

[19] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Comput-
ing, 8(4):14–23, 2009.

[20] J. Yapp, R. Seker, and R. Babiceanu. UAV as a service: Enabling on-
demand access and on-the-fly re-tasking of multi-tenant UAVs using
cloud services. In IEEE/AIAA Digital Avionics Systems Conference,
2016.

[21] H. Zhang, N. Liu, X. Chu, K. Long, A. H. Aghvami, and V. C. M.
Leung. Network slicing based 5G and future mobile networks: Mo-
bility, resource management, and challenges. IEEE Communications
Magazine, 55(8):138–145, 2017.

http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://www.docker.com/
http://dronekit.io/
https://istio.io/
https://k3s.io/
https://kubeedge.io/
https://kubernetes.io/

	Introduction
	Application running-example
	Design and Implementation
	Application model
	Software architecture
	Operation of the Controller
	Initial deployment
	Adaptation of deployment
	Redirection of application traffic

	Evaluation
	Test application and cluster configuration
	Test scenario
	Metrics
	Results

	Related Work
	Offloading and flexible deployment
	Network management

	Conclusion
	References

