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Abstract
Multi-agent systems (MASs) have gained consid-

erable attention in the field of distributed computing
due to their ability to provide technical interoperabil-
ity, resource sharing and flexible coordination. Conse-
quently, MAS are well-suited to address the challenges
posed by the distributed and heterogeneous nodes within
the device-edge-cloud continuum, including orchestra-
tion and standardization, optimal resource allocation,
micro service placement policies, security and privacy.
The objective of this study is to introduce the MLSysOps
project, which aims at the autonomous management of
the entire continuum tackling some of the challenges
mentioned before. MLSysOps utilizes a hierarchical
agent-based AI architecture to interface with the un-
derlying resource management and application deploy-
ment/orchestration mechanisms. A comparative analysis
is conducted between the existing related work and the
proposed framework, highlighting the peculiarities and
advantages of our approach.
Categories and Subject Descriptors

H.4 [Operating Systems]: Miscellaneous; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multi-agent systems
Keywords

MLSysOps, multi agent systems, computing continuum,
system management, device edge cloud computing
1 Introduction

Over the past decade, cloud computing has emerged as
the dominant paradigm in the computing field. Its scala-
bility, on-demand resource availability, cost-efficiency, and
flexibility have positioned it as a driving force across various
industries. Cloud computing fuels digital transformation and
empowers businesses to innovate at a rapid pace. Moreover,

the emergence of edge computing has extended intelligent
decision-making to distributed environments, revolutioniz-
ing data processing and enabling real-time insights at the
network’s edge. The integration of Internet of Things (IoT)
devices, edge technologies, and cloud computing has given
rise to the concept of the Device-Edge-Cloud (DEC) contin-
uum. However, the emergence of this promising paradigm
has presented significant challenges in managing heteroge-
neous and distributed resources, making human management
entirely unrealistic. To achieve dynamic and flexible man-
agement of systems and applications with minimal user in-
volvement, rule-based policies have been employed, offer-
ing some improvement in management. Nevertheless, these
policies come with several limitations due to the intrinsic
heterogeneity, dynamism and context-dependence of contin-
uum systems. In light of these challenges, Artificial Intel-
ligence (AI) emerges as a promising alternative, leveraging
MAS to innovate the management of distributed systems.

This article introduces a Platform-as-a-Service (PaaS)
framework that provides automated and adaptive deploy-
ment and orchestration of distributed applications, being de-
veloped in the context of the EU funded project named
MLSysOps [11]. These applications consist of interact-
ing container-based components with specific resource and
quality-of-service (QoS) requirements. To highlight the
strengths and benefits of our AI-driven approach, we com-
pare MLSysOps with recent works that also utilize MASs for
resources management and orchestration in the continuum.

The remainder of the paper is structured as follows: Sec-
tion 2 describes the background, providing an introduction
to the key features of the technologies and paradigm in-
volved. Section 3 presents the motivations and discusses
related work, summarizing recent papers exploiting agent-
based solutions in the DEC continuum. Section 4 describes
the MLSysOps project, presenting its vision and objectives
of the proposed multi-agent framework in subsection 4.1,
and conducting a comparison between MLSysOps and the
aforementioned surveyed articles in subsection 4.2. Final re-
marks conclude the paper.

2 Background
This section introduces key concepts related to the ML-

SysOps project: SysOps, Computing Continuum, and soft-
ware agents.
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Figure 1: Device-Edge-Cloud continuum.

2.1 SysOps
IT systems encompass the combination of hardware, soft-

ware, networks, and data to meet the information technology
requirements of an organization. These systems are specif-
ically designed to efficiently store, process, transmit, and
manage data and information. Systems Operations (Sysops)
is the discipline of managing and upholding the operational
aspects of an IT system or infrastructure. It involves su-
pervising the configuration, deployment, and monitoring of
various components and services within a system to ensure
its seamless operation and optimal performance. In most
cases, these tasks are automatically carried-out through static
rule-based policies or manually handled based on human ex-
pertise. Sysops professionals, indeed, are responsible for
tasks such as provisioning systems, installing and config-
uring hardware and software elements, managing user ac-
counts and permissions, monitoring system health and per-
formance, implementing security measures, executing back-
ups and disaster recovery procedures, and addressing techni-
cal issues or incidents that may arise.

In light of the substantial growth in such ecosystem, var-
ious approaches leveraging AI-related solutions have been
devised to advance the current approach and efficiently ad-
dress the Sysops and its inherent complexities. Among these,
MLSysOps is proposed as a prominent candidate.

2.2 Computing Continuum
The DEC continuum is a computing paradigm that inte-

grates processing, storage and network resources across a
multi-layer hierarchy composed of IoT devices, edge clus-
ters, and cloud data centers. Also known as Computing Con-
tinuum, its goal is to create a fluid and flexible ecosystem
where distributed resources and services can be dynamically
combined to support data-driven applications [2]. Needless
to say that Sysops in DEC continuum involves further com-
plexity.

This continuum, indeed, encompasses diverse layers of
collaborating computing infrastructure needed to be man-
aged for supporting a wide range of applications. Each
layer utilizes unique technologies and architectures tailored
to meet the specific demands of enterprise applications.
Through collaboration, these layers form a seamless con-
tinuum, enabling efficient data processing from IoT devices
to powerful systems in the cloud as can be seen in Figure1.
At the top of the continuum is cloud computing, which pro-

vides a model for convenient, on-demand remote access to
a shared pool of configurable computing resources. It offers
a highly scalable and flexible infrastructure for storing, pro-
cessing, and analyzing data using one or multiple cloud plat-
forms. Despite the widespread adoption of this computing
paradigm, it has certain limitations when it comes to sup-
porting real-time, low-latency applications, as well as con-
cerns about security, privacy, and data protection. To address
these limitations, the proposed solution lies in edge comput-
ing, which is a distributed computing paradigm that focuses
on processing data and running applications closer to where
the data is generated. Instead of sending all data to a remote
centralized data center in the cloud, this approach empha-
sizes on local data processing, resulting in reduced latency
and data traffic over wide area networks and the Internet.

Edge computing can also be divided into different types
of layers, depending on the capabilities of the devices and the
functions they perform in data-driven applications. The term
“Edge” refers to the data center located between the cloud
data center and the data generators, which consist of local
server nodes on-premises. These nodes are tightly coupled
or clustered, ensuring fast network connectivity among them.
Edge data centers are physically closer to the nodes that pro-
duce data. Examples include server clusters in buildings,
such as hospitals, or special purpose infrastructure like 5G
stations, which are also considered edge data centers. On the
other hand, smart edge nodes are powerful nodes at the edge
capable of mobility or static deployment. They have proper
operating systems and internet connectivity. Examples of
smart edge nodes include those that utilize single-board com-
puters such as Raspberry Pi, Coral Edge, Beagle-Board, and
others. Far edge nodes, in contrast, are resource-constrained
nodes that often lack of a proper operating system and In-
ternet connectivity. These devices communicate wirelessly
with an edge node that acts as a gateway for them. Far edge
nodes can be organized into tightly coupled groups, similar
to a server node cluster, but with significantly less comput-
ing and communication resources. They generally consist of
wearable devices, smart sensors, or smart devices that use
micro-controller or systems-on-chips.

The DEC continuum paradigm envision the exploitation
of the strengths of cloud computing, edge computing, and
IoT devices to create an ecosystem where data-driven appli-
cations can thrive. By combining their strengths, this con-
tinuum enables efficient and scalable data processing, ul-
timately enhancing the capabilities and user experience of
modern applications.
2.3 Software Agents

There is no universally accepted definition of an agent,
but it can be described as an autonomous software entity in-
teracting with other systems and the environment to achieve
specific goals [17]. Indeed, agents possess the ability to per-
ceive their surroundings, make decisions, and take actions in
pursuit of their objectives. They exhibit characteristics such
as autonomy, rationality, responsiveness, mobility, reactivity,
proactivity, and social abilities [18, 19]. Agents are capable
of encapsulating complex functionalities and abstracting het-
erogeneous resources. They act as facilitators for interoper-
ability and support the development of complex, cooperative,



and adaptive distributed systems.
The Foundation for Intelligent Physical Agents (FIPA) [5,

15] is an international organization that focuses on promot-
ing and standardizing the use of intelligent agent technol-
ogy. FIPA provides a platform for researchers, developers,
and practitioners to collaborate, share knowledge, and es-
tablish standards for agent-based systems. The organization
develops specifications, standards, and methodologies to en-
sure interoperability and compatibility among different agent
platforms. FIPA provides the FIPA-ACL, a standard for-
mat and protocol for agents to communicate and exchange
information. This capability enables the creation of MAS
consisting of interconnected agents that interact with each
other to cooperate and solve common tasks through a unified
environment, making them suitable for distributed systems.
MAS have roles and interaction rules that regulate the rela-
tionship between entities or entities with the environment.

In the context of continuum computing, there are chal-
lenges in effectively processing and managing the vast
amount of data generated by IoT devices, making intelli-
gent real-time decisions, and seamlessly integrating with
data center resources (at the edge or in the cloud) for ad-
ditional computational capabilities and storage. Traditional
centralized approaches may face limitations in terms of la-
tency, bandwidth, and scalability when dealing with these
challenges. This is where MAS come into play in the contin-
uum. Rooted in AI and distributed computing, MAS provide
a framework for orchestrating and coordinating intelligent
behavior among autonomous entities. In the DEC contin-
uum, agents can be deployed across different nodes of the
system, such as IoT devices, edge servers, and multiple cloud
servers. By leveraging the collective intelligence and coop-
eration of these agents, MAS enable adaptive and scalable
architectures that effectively handle the challenges of the
continuum. Agents can collaborate and share information
to collectively analyze and process data at the edge, enabling
localized real-time decision-making. They can also interact
with agents deployed in the cloud to offload computation-
intensive tasks or access additional resources when needed.

3 Motivations and Related Work
Due to the vast number of devices that comprise edge

cloud computing, there are several identified challenges
stemming from the scale, heterogeneity, high dynamism, and
intrinsic local properties/variability of the continuum. The
most common challenges encountered in surveys related to
edge-cloud computing [9, 4, 7, 1] consistently include con-
cerns such as optimal resource allocation, security and pri-
vacy, orchestration and standardization, and micro service
placement policies. In recent years, some of these challenges
have been addressed through approaches that prioritize the
use of agents for service orchestration and resource manage-
ment in the DEC continuum.

For example, Chima et al. [3] introduced a novel approach
to scheduling edge-native applications on 5G networks by
considering contextual information. It addresses the limi-
tations of existing scheduling techniques for Industrial IoT
(IIoT) applications. The proposed solution adopts a client-
server model, where a central monitor functions as the client

and requests real-time data from monitor agents acting as
servers. These agents are responsible for monitoring indi-
vidual edge devices within the distributed system and report-
ing their runtime data to the edge-cloud network manage-
ment system. By incorporating contextual information and
utilizing the CoAP protocol for communication, the authors
introduce a framework that addresses the limitations of ex-
isting scheduling techniques and enables efficient data gath-
ering and scheduling of edge-native applications. The agents
in the system appear to be implemented in Python, utilizing
the ”async” library to facilitate communication among them-
selves through asynchronous function facilities.

In their work, Morkevicius et al. [12] proposed a two-
stage multi-objective optimization method for dynamic ser-
vice orchestration in fog computing. Their method focuses
on optimizing service placement among available fog nodes
while considering QoS requirements and minimizing re-
source usage. They introduce orchestrating agents, special-
ized services located in each fog node, to communicate with
a central orchestrator. These agents monitor local hardware
and software environments, collecting data to share with the
cloud-based orchestrator. Based on the orchestrator’s deci-
sions, the agents initiate the necessary actions on the ser-
vices. The architecture consists of three main components:
the fog orchestrator, fog node acting as a fog orchestrator
agent (FOA), and end devices. The FOAs are responsible for
managing local resources within specific fog nodes and play
a crucial role in local resource management. The proposed
method is implemented in simulation using Matlab.

Fu et al. [6] proposed Nautilus, a run-time system de-
signed for deploying user-facing services based on micro ser-
vices in the edge-to-cloud continuum. Their work focuses on
using reinforcement learning-based resource management
agents to optimize micro service deployment. These agents
observe resource usage on each node, such as CPU cores,
memory capacity, and network bandwidth, and take actions
to optimize CPU usage, memory quota, and network band-
width for each micro service. The agents employ deep re-
inforcement learning and consider monetary costs based on
cloud service pricing models for cost optimization while
maintaining QoS and throughput targets.

Masip et al. [10] proposed a hierarchical architecture for
resource management in the cloud continuum. Their archi-
tecture includes agents, cloud agents, and micro agents that
handle devices with different capacities. The proposed agent
consists of a Platform Manager, an Agent Controller, APIs,
security, and Data Management blocks. These agents play
a crucial role in resource management at the edge and fog
levels, while also facilitating communication with the cloud.
Through collaborative efforts, they ensure coordinated and
efficient monitoring and management of the entire resource
set, spanning from the edge to the cloud. The authors have
implemented their own agents and made them available as
downloadable docker containers on the project web page.

EPOS Fog, a decentralized multi-agent system designed
for load-balancing in fog computing, is presented by Nezami
et al. [13]. This system aims to distribute the workload ef-
ficiently and reduce the costs associated with executing ser-
vices in IoT service placement. EPOS Fog utilizes a self-
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Figure 2: MLSysOps target infrastructure, the MAS hierarchical organization and the ML-driven agent-based approach.

organized tree topology with decentralized agents in a multi-
agent system implemented in java. The agents generate and
select placement plans to optimize edge utilization and ser-
vice execution cost. Through collective decision-making and
adaptive choices, the agents learn and optimize their objec-
tives. The global service placement plan is achieved by ag-
gregating the selected plans from each agent.

Liutkevivcius et al. [8] propose a distributed agent-based
orchestrator model for fog computing, which is implemented
using the JADE middleware. In this model, software agents
are deployed on each fog node. These agents, including the
Synchronization Agent, Decision Making Agent, Resource
Monitoring Agent, Request Processing Agent, and Deploy-
ment Agent, collaborate to synchronize clocks, make service
placement decisions, monitor resources, process service re-
quests, and deploy services. The agents communicate with
each other to distribute the decision-making process among
multiple orchestrator fog nodes, enhancing the scalability
and resilience of the system.

Finally, Yu et al. [20] proposed an adaptive and efficient
function delivery engine, named ”FaaSDeliver”, to optimize
the cost of running functions in a heterogeneous computing
continuum that includes the cloud, fog, and the edge. They
use a monitor agent within the FaaS platform that reports the
execution log to the online optimizer in FaaSDeliver frame-
work that creates a cost-efficient function delivery policy for
each function, including the FaaS platform selection and re-
source allocation.

In the following section we present the MLSysOps project
by introducing its fundamental concepts and by comparing
its key features (i.e., a hierarchical AI architecture based on
MAS and proposes re trainable ML models to enhance auto-
nomic system operation in the DEC continuum) with respect
to these related works (precisely, see Table 1).
4 The MLSysOps Project

The MLSysOps project [11] aims to tackle the challenges
of managing resources and application deployment on DEC
continuum systems via machine learning. It is intended as a
PaaS which enables the implementation, orchestration, exe-

cution, and adaptation of distributed applications composed
of interacting components with specific resource require-
ments and considerations for QoS. Besides application man-
agement, MLSysOps also handles system infrastructure ad-
ministration to achieve robust, reliable, energy-efficient, and
environmentally friendly operation. It uses ML methods to
support these functionalities and autonomously control the
underlying deployment, orchestration and resource manage-
ment mechanisms. A key aspect of MLSysOps is its ability
to leverage the available system resources to support contin-
uous and explainable ML models while executing the appli-
cation on the system.

The main objective of MLSysOps is to design, imple-
ment, and evaluate a comprehensive AI-driven framework
for end-to-end system management throughout the DEC
continuum. It aims to tackle the challenges related to man-
aging and optimizing performance, reliability, and energy ef-
ficiency in continuum systems. More specifically, the main
objectives set by MLSysOps are:

1. Deliver an open AI-ready, agent-based framework for
holistic, trustworthy, scalable, and adaptive system op-
eration across the heterogeneous DEC continuum.

2. Develop an AI architecture supporting explainable, ef-
ficiently re-trainable ML models for end-to-end auto-
nomic system operation in the DEC continuum.

3. Enable efficient, flexible, and isolated execution across
the heterogeneous continuum.

4. Support green, resource-efficient, and trustworthy sys-
tem operation, while satisfying application QoS/QoE
requirements.

5. Execute realistic model training, validation, and evalu-
ation.

Shifting our focus to the subject of this paper, in the fol-
lowing subsection, we present the various agents employed
in the proposed framework, highlighting their functionalities
and making a comparison between this implementation and
the related work previously presented. We examine the de-



Table 1: Agent-based Sysops approaches in the computing continuum.

Year Paper Title Agent Based Task and mobility Continuum Approach to Sysops Use cases Agent Technology

2020 Context-Aware Kubernetes Scheduler for
Edge-native Applications on 5G [3]

Monitor
Fixed

Edge Scheduler algorithm Industrial IoT Car 3D model Python

2021 Method for Dynamic Service Orchestration in
Fog Computing [12]

Monitor, Execute (manage)
Fixed

Fog Multi-objective optimization Simulation with Matlab Matlab

2021 Adaptive Resource Efficient Micro service
Deployment in Cloud-Edge Continuum [6]

Monitor, Analyze (prediction)
Fixed can be mobile

Edge to Cloud Machine Learning based approach Social Network, Media Service, Hotel
Reservation and Ticket train

not specified

2021 Managing the Cloud Continuum: Lessons Learnt
from a Real Fog-to-Cloud Deployment [10]

Monitor, Execute
Fixed

Fog to cloud Scheduler algorithm executed by agents Smart cities, Smart Fog-Hub Service,
Smart boat service management

Java

2021 Decentralized Edge-to-Cloud Load Balancing:
Service Placement for the Internet of Things [13]

Monitor, Plan, Execute
Fixed

Edge fog cloud Optimization approach Health monitoring systems Docker

2022 Distributed Agent-Based Orchestrator Model for
Fog Computing [8]

Monitor, Analyze (Decision Making), Execute
Fixed

Fog Policy based approach Person-oriented applications, smart
home and environments monitoring

JADE

2023 FaaSDeliver: Cost-efficient and QoS-aware
Function Delivery in Computing Continuum [20]

Monitor
Fixed

Edge-fog-cloud Machine Learning based approach Healthcare not specified

2023 MLSysOps Framework (this work)
Monitor Analyse Plan Execute

Fixed and mobile
DEC Re-trainable Machine Learning based approach Smart Cities and Smart Agriculture SPADE

sign and implementation aspects of the MLSysOps agent-
based framework, exploring the distinct roles and capabili-
ties of each agent, as well as the proposed infrastructure and
agent operations, as depicted in Figures 2a and 2b respec-
tively. Our aim is to provide a comprehensive understand-
ing of the structure, functionality, and unique benefits of the
agent-based framework in contrast to the existing literature.

4.1 Proposed agent framework
As stated in the project objectives, MLSysOps introduces

a distributed MAS to address the various challenges in sys-
tem operations tasks within the DEC continuum. In partic-
ular, each agent has the capability to perform the MAPE
(Monitor-Analyze-Plan-Execute) service [16] through each
layer of the continuum to provide its core functionality. In
other words, each agent has the ability to: (i) Monitor the
collected data that will be used for both system monitor-
ing and ML model re training; (ii) Analyse the data, super-
vise model retraining, detect model drifting, execute non-
ML benchmark algorithms, collaborate with the Plan service
for executing ML models, and performs conflict resolution
among concurrent models; (iii) Plan, in addition to execut-
ing the models and in synergy with Execute service, the AI-
ready resource provisioning, application deployment and or-
chestration, and security and trust management mechanisms;
and (iv) Execute the plans generated by the Plan service.

The MLSysOps project uses a multi-layered approach to
enable interoperability at varying levels of abstraction, con-
sidering both syntax and semantics of requirement specifica-
tions, events notification, and telemetry metrics in the het-
erogeneous DEC environment. As shown in Figure 2a, the
layers allow to categorize the resources based on their in-
frastructure capabilities in four main layers: far edge, smart
edge, edge data centers, and cloud data centers. Different
types of agents are assigned the responsibility of AI-driven
control and ML model training across different levels of the
hierarchy, each with varying granularity of telemetry data
and requirements. As depicted in the same figure, Node
agents are represented in black, Cluster agents in blue, and
the Continuum agent in green.

Node agents: These agents are responsible for the man-
agement of ML model training and evolution processes at the
node level.

Cluster agents: These agents are responsible for AI-
driven control and ML model training for entire groups of
nodes, such as nodes that are part of the same edge infras-
tructure in a given geographical area, or server nodes that
are part of the same cloud-edge data center.

Continuum agent: This singleton agent facilitates the in-
teraction between cluster agents to coordinate higher-level
AI-driven control and ML training purposes within a layer
(e.g., Cluster agents of different cloud data centers) or be-
tween layers (e.g., Cluster agents of different edge infras-
tructures and Cluster agents of cloud data centers).

It is worth noting that the node agents are executed di-
rectly in the respective nodes of the system except for those
devices where the agent resides at the proxy level, taking
into account that the devices located in the far edge layer
do not have the capabilities to execute the agent due to the
resource or communication limitations. In contrast, Cluster
agents and the Continuum agent can be hosted anywhere,
given their ability to interact between layers and available
system resources.

By incorporating these functionalities, MLSysOps en-
hances its capabilities in monitoring, analyse, planning, and
executing tasks within the continuum, promoting efficient
and effective system management and orchestration. The
expectation is to achieve scalable and incrementally refined
AI-driven control across the heterogeneous DEC continuum.

4.2 Comparison with related works
The comparison between the proposed MLSysOps and re-

lated works, discussed in Section 3, is presented in Table 1.
The analysis focuses on the role of agents within the system,
where it is observed that agents primarily serve a monitor-
ing function. Agents in the discussed studies are adept at
monitoring, collecting, and sharing information within the
ecosystem usually being fixed on the nodes they are working
on. Some studies also highlight agents ability to perform di-
verse tasks such as system management, orchestration, and
applying ML or optimization techniques to improve system
performance. The MLSysOps framework encompasses these
tasks on each agent within the MAPE loop, continually as-
sessing sysops and enhancing energy efficiency by distribut-
ing workloads across available resources in the continuum.

Unlike certain approaches that concentrate on specific



layers of the continuum, MLSysOps provides an end-to-end
solution including far edge devices, ensuring seamless ex-
ecution of micro services throughout the entire DEC con-
tinuum. The approach towards sysops is another point of
comparison, addressing whether system management is han-
dled through human intervention, policy-based automation,
or ML techniques for continuous monitoring and mainte-
nance. MLSysOps stands out by utilizing explainable ML
approaches, aiming to understand the decision-making pro-
cess and provide explanations for system operations within
the extensive ecosystem. It strives to manage the continuum
extensively without relying on human intervention, by em-
ploying automatic re trainable ML models according to cur-
rent telemetries and expected performance (see Figure 2b).
Notably, ML models are stored outside the MLSysOps agent
and can be invoked as microservices: such a decoupling pro-
vides higher degree of flexibility (agents are not monolith but
lightweight entities free to use always updated/customized
models) and it is another relevant distinctive feature of our
project. For the implementation of MLSysOps agents, we
are considering a MAS platform that is based on Python,
such as SPADE [14]. The use of Python opens up the pos-
sibility of leveraging widely employed machine learning li-
braries like Scikit-learn, TensorFlow, and PyTorch. Addi-
tionally, compliance with FIPA standards in the framework
permits communication among various heterogeneous MAS,
thereby enhancing their interoperability and integration. The
adherence to such a standard is key given that agents could
be implemented in different languages/platforms depending
on the resource of their host environment.

Overall, MLSysOps offers a comprehensive framework
that utilizes MAS, monitoring, automation, and optimization
techniques to impulse an AI-driven control across the hetero-
geneous DEC continuum. The effectiveness and versatility
of the MLSysOps framework will be evaluated through both
simulated use cases and real testbeds in the DEC continuum
in the domain of Smart Cities and Smart Agriculture.

5 Conclusions
At the state-of-the-art there exist a number of studies im-

plementing agents or MAS to enhance resource management
and application deployment in the DEC continuum. How-
ever, many of these works still depend on policies or au-
tomation algorithms, which prove to be inefficient in the face
of a large, heterogeneous ecosystem that undergoes dynamic
changes. This inefficiency is particularly evident when con-
sidering system infrastructure changes due to the intrinsic
local properties and variability of the DEC Continuum.

To overcome these limitations, this paper has presented an
approach that utilizes ML techniques implemented through
MAS to enhance resource management and application de-
ployment in the DEC continuum. Specifically, the proposed
MLSysOps framework is based on the MAPE loop model
and continuously retrains ML models to adapt and enhance
functionalities in response to system changes. In the next
three years the project will implement the proposed infras-
tructure and will carry out numerous tests using a combi-
nation of research testbeds and real world applications to
showcase and validate the discussed functionalities of the

proposed framework.
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