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Abstract
Efficient resource management (RM) is paramount for

achieving high performance and utilization of computing re-
sources in cloud computing environments. Conventional ap-
proaches, such as rule-based heuristics and optimization al-
gorithms, face challenges in adapting to the dynamic and in-
tricate nature of these environments. In this work, we in-
vestigate the utilization of reinforcement learning (RL) tech-
niques for RM on the cloud. We provide a comprehensive
taxonomy that categorizes RL-based approaches according
to various facets of RM, encompassing resource allocation,
auto-scaling, load balancing, and energy efficiency. By con-
ducting an extensive literature review, we analyze and com-
pare diverse RL algorithms employed in RM, highlighting
the strengths and limitations of each approach. Last, we
identify potential research directions in the context of RL-
based resource management methods on the cloud.
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1 Introduction
Resource management is a critical aspect of achieving

high performance and efficient utilization of cloud resources.
Over the years, numerous approaches have been proposed to
address this challenge. These approaches include rule-based
methods, heuristics, meta-heuristics, control or queuing the-
ory methods, and traditional machine learning methods like
supervised and unsupervised learning.

Heuristics [6, 23], provide simple and intuitive decision-
making rules, while meta-heuristic algorithms [55], aim to
find near-optimal solutions. Control and queuing-theoretic
methods [41, 59], utilize mathematical models to allocate
resources based on system performance metrics. Game-
theoretic approaches [52, 66] model interactions between
entities as strategic games, providing insights into opti-

mal decision-making and equilibrium solutions. However,
heuristics and control and queuing theoretic methods face
limitations in adapting to changing conditions and handling
the dynamic and complex nature of cloud environments. On
the other hand, game-theoretic and meta-heuristic methods
may encounter challenges in capturing the full complexity of
interactions and require substantial computational resources.

Machine learning (ML) techniques offer notable advan-
tages over traditional resource management methods, partic-
ularly when dealing with the non-convex properties of re-
source management. As highlighted by [27], they have the
potential to generate superior solutions in real time, which
suits the dynamic nature of cloud environments. However,
the deployment of ML methods requires substantial data
gathering and maintenance, incurring additional resource
costs. Moreover, when considering temporal changes and in-
teractions among multiple systems, efficient control becomes
a formidable challenge for traditional ML approaches. This
challenge has sparked a shift towards RL techniques that ex-
cel in (i) handling temporal changes, (ii) adapting to uncer-
tain environments, and (iii) conducting long-term planning,
utilizing exploration strategies to discover new optimal solu-
tions. Consequently, RL opens up new avenues for achieving
optimal solutions in resource management scenarios.
Contributions. This taxonomy offers a roadmap for fur-
ther advancements in RL-based cloud resource management
(CRM) methods. The contributions of this work are three-
fold: (i) We provide a comprehensive taxonomy that catego-
rizes the literature based on the RL methods deployed, action
space, and reward function used. (ii) We survey a wide range
of RL-based techniques used for CRM, justify their effec-
tiveness, and discuss their limitations. (iii) We identify open
problems and future research directions in RL-based CRM.

2 Background
Before introducing the proposed taxonomy, we shortly

discuss the required background for understanding the met-
rics we employed to categorize the state-of-the-art.
CRM. Cloud computing has transformed the way organi-
zations utilize and manage their resources. In particular,
the development of virtual machines (VMs) and contain-
ers have revolutionized the infrastructure models offered by
cloud service providers (e.g., Infrastructure as a Service pro-
vides). These technologies enable sharing of physical re-
sources among multiple entities while ensuring efficient uti-



lization and isolation. VMs and containers operate as self-
contained units, encapsulating the required software.

Infrastructure as a Service (IaaS) providers gain revenue
by providing access to their resources while minimizing their
operational costs and not violating service-level agreements
(SLAs) by employing load-balancing algorithms, capacity
planning strategies, and resource optimization techniques.In
contrast, IaaS customers prioritize cost-effectiveness while
maintaining application performance. They evaluate pric-
ing models, rental costs, storage expenses, and associated
fees to find economical options while meeting QoS require-
ments. By assessing performance metrics like response time
and throughput, they seek solutions that strike a balance be-
tween cost savings and performance targets.

Notably, although both parties strive for a balance be-
tween performance and cost, they evaluate and measure these
aspects differently. IaaS providers emphasize system-level
performance, energy efficiency, and meeting SLA commit-
ments, whereas IaaS customers focus on application-level
performance, cost optimization, and aligning the services
with their specific QoS requirements.

Reinforcement Learning. RL provides a framework for an
agent to learn optimal resource allocation policies through
trial-and-error interactions directly with the system. RL al-
gorithms, such as Q-learning and policy gradient methods,
have demonstrated their effectiveness in various domains.
Cloud service providers can leverage the adaptability, learn-
ing capabilities, and dynamic decision-making offered by
RL agents to address the limitations of existing methods
for optimizing resource allocation, improving system perfor-
mance, and reducing energy consumption.

The RL paradigm involves two major components: the
agent and the environment. The environment represents the
decision-making problem that the agent needs to solve and is
usually modeled as a Markov decision process [56]. It cap-
tures the dynamics of the system by defining the state space,
which represents all possible configurations of the environ-
ment and its transitions at any given time. The agent inter-
acts with the environment by selecting actions from an action
space, a set of all possible actions the agent can take. The
agent’s goal is to learn a policy that maps states to actions, di-
recting its decision-making process. The performance of the
agent is evaluated based on a reward signal provided by the
environment. The reward serves as a feedback mechanism
to guide the agent towards desirable behaviors. It quantifies
the immediate desirability or utility of being in a particular
state or taking a specific action. The reward can be defined
based on various factors and objectives via an RL method
(e.g., value-based, policy-based, or actor-critic).

A common categorization in RL is the distinction between
model-based and model-free methods. In model-based rein-
forcement learning, an explicit model of the environment is
created, allowing the agent to simulate and plan ahead. In
contrast, in model-free methods, the agent directly learns a
policy or value function without relying on an explicit model
of the environment. Most techniques found in the literature,
primarily employ model-free approaches.

RL methods. Value-based methods, focus on estimating

RL Method References

Value-based
[1,2,4,5,7–13,15,16,18–22,30,31,33,
38–40, 45–51, 53, 57, 58, 60–62, 64, 65,
67, 71, 72, 75–77, 79, 80]

Policy-based [24, 34–36, 42–44, 54, 74]

Actor-critic [3, 14, 17, 29, 37, 63, 73, 78]
Table 1. RL methods in the CRM literature

a value function to determine the optimal action. They
may struggle, however, with high-dimensional state spaces,
where the number of possible states becomes prohibitively
large. Despite this limitation, value-based methods are a
powerful approach to learning optimal policies based on
value estimates. Policy-based methods directly parameter-
ize or represent the policy function, determining the action
selection at each state. However, these methods often en-
counter the challenge of high variance in the estimated state
value, which can negatively impact the stability and con-
vergence of the training processes. Despite this challenge,
policy-based methods offer a direct and flexible approach to
learning optimal policies. Actor-critic methods leverage the
strengths of both value-based and policy-based approaches
by incorporating two distinct components: an actor and a
critic. The actor learns the policy and makes action selec-
tions based on the current policy, while the critic estimates
the reward function and provides feedback on the quality of
the chosen actions. This combination allows for more ef-
ficient learning and improved decision-making in dynamic
environments. These methods are beneficial in continuous
environments where actions are represented as real values
by amortizing the variance in the state value estimations.

Table 1 provides a categorization of the RL methods in
the literature. By utilizing value estimation and policy opti-
mization together, actor-critic methods offer a balanced and
effective approach to reinforcement learning. The choice of
which RL approach to use depends on various factors, such
as the complexity of the problem and the available data.
Deep Reinforcement Learning. Deep Reinforcement
Learning (DRL) has significantly boosted the performance
of RL methods by leveraging the capabilities of deep learn-
ing. DRL has been successful in complex and dynamic envi-
ronments where traditional RL approaches faced challenges
with scalability. By employing deep learning models, DRL
agents benefit from powerful function approximations and
the ability to handle large state-action spaces. One advan-
tage of DRL is its capacity for representation learning, allow-
ing agents to extract meaningful features from raw sensory
data and capture underlying patterns and structures. How-
ever, it is important to acknowledge the challenges and costs
associated with DRL. Computationally, DRL models can be
resource-intensive. Moreover, the complexity introduced by
DRL can reduce interpretability, making it challenging to un-
derstand the decision-making processes.

3 RL-based techniques for CRM
In this section, we discuss and categorize the RL-based

techniques for CRM. Most of the proposed techniques are



tailor-made variations of RL models addressing specific re-
source management problems. They often incorporate other
techniques, such as queuing methods, or machine learning
models for handling the workload prediction [12, 21, 39], or
anomaly detection [30, 49], to enhance the intelligence and
effectiveness of the approach.

An approach well-suited to cloud environments that re-
quire intelligence at multiple levels is hierarchical reinforce-
ment learning (HRL), where multiple RL agents are de-
ployed at different levels of the system [30,39]. For instance,
one RL agent may be responsible for making high-level deci-
sions, such as selecting the cluster for job scheduling, while
another RL agent within the cluster decides the exact node
for job allocation [38]. HRL is closely related to the concept
of Semi-Markov Decision Processes in RL that allows for ac-
tions to persist for a duration of time, enabling the modeling
of higher-level actions and subtasks. HRL leverages this idea
by decomposing complex tasks into a hierarchy of subtasks,
each governed by its own RL agent. This hierarchical struc-
ture helps in managing computational complexity and en-
ables agents to focus on specific levels of decision-making,
leading to more efficient resource management strategies.

In contrast, multi-agent reinforcement learning (MARL)
techniques involve multiple RL agents operating on the same
task. Each agent may have a different objective, but collec-
tively, they handle the multi-objective problem of resource
management in an intelligent collaborative manner. Un-
like hierarchical RL, where actions are taken sequentially,
MARL allows for simultaneous action selection, reward ob-
servation, and coordination among agents [2,4,8,16,64,65].

Different approaches have been employed to handle the
challenge of large state and action spaces. Some works dis-
cretize the state and action space to reduce the dimension-
ality, making the problem more manageable [58]. However,
this discretization may introduce noise and lose the contin-
uous nature of the problem. In contrast, others preserve the
continuity of the problem, arguing that it reflects the dynamic
and continuous reality of the cloud environment [3, 14].

Additionally, there are emerging approaches that incor-
porate meta-reinforcement learning (Meta-RL) to tackle the
dynamic changes in the cloud environment more effectively.
Meta-RL techniques focus on learning how to learn, enabling
the RL agent to adapt quickly to new and unseen situations.
This adaptive capability proves beneficial in resource man-
agement scenarios where the environment undergoes fre-
quent fluctuations and variations [69].
State space of RL agents. The state space in RL-based re-
source management approaches captures the current system
state, including server resource utilization and pending job
descriptions. It serves as a monitoring system, enabling the
RL agent to observe and make informed decisions. Typi-
cal state space metrics include CPU and memory utilization,
network bandwidth, and storage availability. The design of
the state space is tailored to the agent’s requirements and the
specific problem, allowing for variations. While the core el-
ements of the state space remain consistent, these variations
reflect the diverse objectives, constraints, and operational
characteristics of the systems being addressed. In certain
resource management scenarios, the agent may lack com-

Action References

Task-to-resource
mapping

[1–3, 7, 11, 13–19, 24, 28, 29, 31,
33–40,42–45,47,48,50,54,60–63,
65, 68, 69, 72–74, 77, 78]

Horizontal scaling [4, 8, 9, 12, 20, 30, 49, 58]

Vertical scaling [10, 30, 49, 51, 80]

Power management [39, 50, 57, 76]

VM consolidation
and load balancing

[5,21,22,26,32,46,48,63,64,70,
75, 77]

Table 2. RL action spaces in the CRM literature.

plete visibility into the system state [42]. This challenge is
addressed by employing partially observable Markov deci-
sion processes, where the agent receives partial observations
rather than complete information about the state. The intro-
duction of partial observations adds complexity and poses
challenges for decision-making, as the agent must contend
with the inherent uncertainty in the observed state.

Action space of RL agents. We organize the actions of
RL-based CRM, into task-to-resource mapping, horizontal
scaling, and load balancing. IaaS providers, with access to
physical servers, can also perform VM consolidation, verti-
cal scaling, and power management. Table 2 presents a tax-
onomy of various actions identified in the literature.

Task-to-resource mapping involves mapping or allocating
tasks or VMs that are awaiting execution, without involving
any migration of running jobs, to specific physical resources
or servers. The goal is to efficiently assign tasks to available
resources based on criteria like load balancing, resource uti-
lization, or minimizing SLA violations. VM consolidation &
load balancing on the other hand, involves migrating or con-
solidating tasks or VMs from underutilized or over-utilized
resources to achieve better resource utilization, reduce en-
ergy consumption, and improve system performance. No-
tably, although most works in the literature focus on finding
which task to schedule and where to place it, there are some
approaches that only focus on the selection of which task to
schedule. These approaches assume a global resource pool
where task placement is not a concern [24, 42, 74].

Horizontal scaling refers to dynamically increasing or de-
creasing the number of instances or replicas of a task to han-
dle varying workloads to maintain performance, meet de-
mand, or optimize resource usage. Vertical scaling, on the
other hand, involves adjusting the capacity or configuration
of individual resources assigned to a task or VM.

Power management focuses on optimizing energy con-
sumption in data centers by dynamically powering off un-
derutilized resources or reducing power consumption during
low-demand periods. While most works in the literature pri-
marily focus on simple techniques such as turning resources
ON or OFF, there are works that introduce more advanced
strategies. Some studies explore adjusting the airflow level
as a means to optimize energy consumption [50], while oth-
ers incorporate dynamic voltage and frequency scaling tech-
niques into the decision-making process [79]. These ap-



Reward Parameter References

Performance metrics
[2,3,5,8,10–12,14,16–19,24,29,
30,34,37–39,42,43,45,47–51,53,
54, 58, 60–63, 65, 67, 72–75, 78]

SLA
[1, 4, 5, 10, 20, 21, 35, 49, 58, 63,

64, 70, 77, 81]

VM price cost
[4, 9, 12, 13, 15, 20, 28, 31, 33, 40,

46, 65, 71, 80]

Energy cost
[2, 5, 11, 21, 29, 38, 39, 48, 50, 57,

63, 64, 67, 72, 73, 76, 77, 79]

System metrics [17, 18, 22, 30, 44, 49, 60, 69, 70]
Table 3. RL reward parameters in the CRM literature.

proaches aim to achieve finer-grained control over resource
utilization and enhance energy efficiency in data centers.

Reward functions of RL agents. The reward function in an
RL model is constructed by integrating a set of parameters
that collectively define the optimization goal. In Table 3, we
summarize various reward parameters commonly employed
in the literature. A reward parameter represents a specific
component that contributes to the overall reward function.

Performance metrics refer to individual tasks or jobs
within the system. They include QoS metrics such as la-
tency, average waiting time, throughput, etc. System metrics,
on the other hand, focus on the overall resource utilization
and workload distribution in the system. These metrics are
related to the utilization levels of different resources, such as
CPU, memory, and network bandwidth, as well as the bal-
ance or imbalance of workload among servers. Energy costs
are integrated as a reward parameter to incentive the selec-
tion of energy-efficient resource allocation strategies, lead-
ing to reduced power consumption. SLAs are incorporated
as a reward parameter to ensure that resource management
decisions align with the agreed-upon service commitments.
VM price represents the costs associated with provisioning
and utilizing virtual machines. By considering VM price cost
in the reward function, resource management algorithms can
optimize resource allocation while minimizing costs.

Exploration strategies of RL agents. Most works in the lit-
erature utilize the ε-greedy exploration strategy. This simple
yet effective approach balances the exploration vs exploita-
tion trade-off by selecting the action with the highest esti-
mated value most of the time (exploitation), while occasion-
ally choosing a random action (exploration) to discover new
possibilities and avoid getting stuck in sub-optimal solutions.

4 Open problems
Despite significant progress in RL-based CRM, there are

still several open problems. Below we identify six of them.

1) RL in heterogeneous computing environments. One
open challenge is to explore the placement and migration
of application components in diverse, heterogeneous envi-
ronments. Application components are parts that make up
an application, which may need to run on different types
of computing nodes, including smart edge nodes, edge data

centers, and cloud data centers. This arrangement across var-
ious layers creates a dynamic, interconnected environment,
the cloud-edge continuum. Existing literature focuses on
small-scale testbeds or simulations, limiting the understand-
ing of how RL models can be effectively deployed in such
complex, real-world environments. Therefore, there is a sig-
nificant knowledge gap related to the deployment of RL tech-
niques in such evolving environments.
2) Computer vision techniques for CRM. Integrating RL
models with computer vision for CRM is a highly promising
research area. One possible direction is to provide visual rep-
resentations to RL agents, resembling heatmaps, that capture
the resource usage status of the system. This visual snapshot
highlights system areas experiencing high demand. By using
computer vision algorithms, the RL agent can learn abstract
features to better optimize system resources.
3) Model-based RL for CRM. Previous works have faced
challenges in utilizing model-based techniques, due to the
complexity of creating accurate models of dynamic cloud
environments. However, with the emergence of transformer
architectures and generative models, there is an opportunity
to explore more efficient ways of modeling such environ-
ments [25]. By creating models based on past system experi-
ences, the complex and dynamic environment can be framed
in a way that facilitates faster adaptation and convergence,
enabling improved performance and resource optimization.
4) XAI techniques for RL agents in CRM. To the best of
our knowledge, there is no work in the literature that incor-
porates explainability into RL-based systems in CRM. As
DRL models get more complex, it is crucial to avoid treating
them as black boxes. Understanding how these models make
decisions reduces concerns over errors or biases caused by
limited comprehension. Transparency helps build trust and
understanding and aids in system debugging by identifying
and analyzing potential issues. We envision XAI-assisted RL
agents to be associated with SLA monitoring.
5) Model drifting of RL agents. Limited research exists to
detect performance degradation in the behavior of RL agents
due to long-term changes in the highly dynamic cloud sys-
tems. Techniques like continual RL and meta-RL have the
potential to resolve model drifting with efficient retraining.
6) Generalization of RL agents. Lastly, Traditional RL re-
lies on static reward functions to drive agent behavior. By
employing dynamic reward functions through reward ma-
chines, agents can adapt and generalize across diverse sce-
narios, dynamically changing their behavior to achieve spe-
cific goals, based on system needs.
5 Conclusion

In this work, we discuss state-of-the-art methods for ad-
dressing CRM using RL-based agents. We provide a review
of the solved problems and common methods employed.
Also, we identify six challenges that require further inves-
tigation and have promising directions for future research.
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