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ABSTRACT 

The intermittent nature of renewable energy sources poses 

challenges for their integration at the edge of the grid leading to 

mismatching between the demand and supply. In this paper we 

examine the potential of electrical vehicle charging and discharging 

coordination for demand side management. We define a 

lightweight EVs coordination strategy based on Whale 

Optimization Algorithm that optimizes the charging and 

discharging schedule of a fleet of EVs to follow a renewable energy 

generation curve and maximize its usage in the local microgrid. In 

this process, individual whales are represented as a scheduling 

matrix, and element-wise mathematical operations are applied to 

the energy values to explore and exploit the search space. This is 

done while considering constraints such as charging station 

capacities, EV battery levels, and driver preferences. The fitness 

function is defined to align the EVs operation with the availability 

of local renewable energy while penalizing violations of 

constraints. The initial findings are promising, indicating that the 

algorithm effectively schedules EVs to closely align with 

renewable energy profiles, with a Pearson coefficient > 0.97. It 

features good convergence properties, the fitness stabilizing in 

relatively a low number of iterations, making it suitable for 

deployment directly on EVs or even on low-resource devices, such 

as IoT smart meters used in microgrids. 
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1. INTRODUCTION 
Currently, the global energy sector is undergoing a transition from 

fossil fuels to renewable energy sources, to combat climate change 

caused by pollution and to provide more affordable and accessible 

energy for all [1]. Renewable energy sources (e.g. solar, wind, 

hydropower) are increasingly being integrated into power grids, 

offering cleaner and more sustainable alternatives to the traditional 

ones. Despite the great opportunities brought by renewable energy, 

its intermittent nature, influenced by weather conditions, introduces 

uncertainty in production representing a significant challenge for 

the stability of the grid [2]. At the same time, energy demand 

fluctuates, and storage solutions are limited. Coordinating energy 

demand, generation and storage becomes even more complicated 

in the current context in which there is a strong global trend towards 

transportation electrification, driven by environmental concerns 

and government policies. Electric vehicles (EVs) require a huge 

amount of energy to charge contributing to a significant load 

demand, negatively impacting the performance and reliability of 

power grids [3]. Moreover, decision making processes handle large 

amounts of data to determine when energy should be consumed, or 

when an energy consumer with storage could contribute back to the 

grid to help manage demand peaks. Centralizing these processes in 

a cloud-based environment is often impractical due to potential 

bottlenecks caused by limited network bandwidth and large amount 

of data that needs to be processed. This can be avoided by using 

edge-fog-cloud architectures and lightweight coordination 

algorithms operating on a wide range of IoT devices.  

In this context, we consider that there is good potential for 

managing the renewable energy peaks by coordinating a set of EVs 

as a decentralized energy storage. In this way, EVs can mitigate the 

uncertainty of renewable energy generation by optimizing the 

scheduling of discharge and charge operations while contributing 

to the stability of the power grid [4]. However, the coordination of 

EVs charging and discharging according to renewable energy 

generation is a complex optimization problem involving 

continuous variables (e.g. the state of charge of EV batteries, 

renewable energy production), discrete variables (e.g. the on/off 

status of charging stations) and many constraints (e.g. constraints 

related to the scheduled time for charging/discharging, or related to 

the distance to the charging station) [5]. Additional complexity 

arises from the need to balance the variable supply of energy from 

renewable sources, which is stochastic and exposed to 

uncertainties, with the fluctuating demand of electricity, making the 

problem NP-hard [6]. The challenging multifaceted optimization 

problem can be effectively addressed using bio-inspired meta-

heuristics. State of the art solutions used for solving this kind of 

problem include heuristic and metaheuristic algorithms (e.g. 

genetic algorithms, simulated annealing), and machine learning 

techniques such as reinforcement learning [7]. Most of the existing 

solutions consider objectives related to the minimization of the 

travel distances for EV users, reducing the infrastructure costs, and 

ensuring efficient energy distribution [8]. However, balancing the 

variable supply of renewable with the fluctuating energy demand 

using a fleet of EVs still requires investigation. 

In this paper, we propose an innovative lightweight strategy for 

coordinating EVs charging and discharging to align with the 

availability of local renewable energy. We aim to ensure the 

optimal utilization of energy resources and balance the demand 

with the generation and a positive and satisfactory experience for 

the EVs’ owners by considering aspects related to their comfort. 

Our coordination method is using the Whale Optimization 

algorithm (WOA) [9] which is inspired by the hunting behavior of 

humpback whales that uses an ingenious method to catch their prey, 

namely the bubble-net feeding method. We have defined the EVs 

charging/discharging schedule as a matrix that models the 

assignment of EVs per charging station and the amount of energy 

charged. A population individual in WOA is represented by such a 

scheduling matrix instance. In the coordination process, we have 



considered constraints related to the charging station capacities, EV 

battery, and driver preferences. The population of individuals is 

updated in each iteration using three main phases: search for prey, 

shrinking encircling, spiral updating position. The search for prey 

corresponds to the exploitation of the EVs optimization space, 

while the shrinking of the encirclement and the spiral update 

position together correspond to the exploration of the space. A 

fitness function evaluates how well the EVs schedule balances the 

renewable energy production and consumption and penalizes 

individuals who violate the defined constraints. WOA was 

designed for continuous variables, however our EVs coordination 

method works with discrete variables and integers for updating the 

individuals in each phase. To handle integer values, we rounded the 

charging and discharging energy values in each cell of the EVs 

scheduling matrix to the nearest integer after specific mathematical 

operations. Additionally, element-wise mathematical operations 

are performed on the energy values. The paper also analyzes 

deployment solutions of the WOA algorithm in a centralized cloud 

environment and in an edge-fog-cloud setup. 

The paper is structured as follows. Section II presents state of the 

art approaches in the area. Section III defines the WOA solution for 

coordinating the EVs charging and discharging operations. Section 

IV presents evaluation results and discusses deployment solutions 

for the WOA algorithm. Sections V presents conclusions. 

2. RELATED WORK 
In general, WOA has been successfully applied to a wide range of 

optimization problems (i.e., continuous single-objective problems, 

binary problems, etc.) in various domains [10]. Selecting the 

optimal locations for charging stations is crucial in developing 

efficient and reliable infrastructure for EVs. Properly positioned 

charging stations ensure convenient access for EVs’ owners, reduce 

congestion, and enhance the overall efficiency of the charging 

network. Cheng et al. propose an Improved WOA (IWOA) to solve 

the problem of poor accuracy and stability in optimizing the 

locating and sizing of nonconvex and nonlinear electric vehicle 

(EV) charging stations (CSs) [11]. The authors consider the true 

path of the traffic network structure in the planning and use IWOA 

to solve the proposed model. IWOA introduces the convergence 

factor, differential evolution, and the concept of antibody 

concentration (to increase the local search ability) into the WOA 

algorithm. The quality of the initial solution is significantly better, 

and, as the population diversity increases, WOA can escape the 

local maximum. Li et al. use a modified WOA for selecting the 

location of CSs [12]. To generate the initial population, they use a 

Circle chaotic map, and a Tent chaotic map to generate 

pseudorandom numbers that results in a better distribution of the 

initial search space and a better algorithm convergence speed. A 

reverse learning mechanism is introduced with a significant impact 

on expanding the screening range and improving the convergence 

speed. This strategy helps to balance and improve the global search 

ability and local development ability of the algorithm. Mehroliya et 

al. use WOA in optimal planning of CSs, distributed generators 

(DGs), and shunt capacitors (SCs) along with electrical network 

reconfiguration [13]. The multi-objective problem of allocating EV 

CSs, along with DGs and capacitors aims to improve the voltage 

stability and minimize active and reactive power losses in the radial 

distribution system. Rizwan et al. [14] use WOA to determine 

location and size for DGs and CSs in a radial distribution system 

for the voltage profile improvement and reduction of power loss.  

With regards to balancing the energy demand with energy 

consumption using EVs coordination, Hai et al. describe an 

approach for optimal operation of a microgrid with several 

distributed energy resources and EVs aiming to obtain minimum 

operational costs [15]. It incorporates the vehicle to grid (V2G) 

concept to reduce the cost of the network by using energy from 

plugin-EVs. They develop a novel optimization algorithm, hybrid 

WOA and pattern search (HWOA–PS), which addresses the global 

search space issue of WOA, and evaluate the efficacy of the 

suggested random structure on a grid-tied microgrid. Paul et al. 

propose an optimal hydro-thermal scheduling technique for EVs to 

obtain a maximum utilization of renewable energy sources for 

economic power generation with less emission [16]. They use a 

new approach for V2G with a wind–solar based HTS system for 

improving grid reliability and resilience based on a chaotic-quasi-

opposition-based WOA. The statistical analysis for economic load 

scheduling and economic emission scheduling show the superiority 

in performance and robustness of CQWOA algorithm over other 

algorithms on the same experimental platform. Shaheen et al. 

develop an intelligent and cost-effective V2G strategy that benefits 

both EV users and the power grid [17]. The goal is to optimize the 

timing of EV charging and discharging activities when vehicles are 

parked, to reduce daily charging costs for EV owners, and help 

manage energy demand on the electric grid side. Four metaheuristic 

algorithms are used to find the most effective approach (Particle 

Swarm Optimization, Differential Evolution, WOA, Grey Wolf 

Optimization) WOA emerging as the most efficient and reliable 

method for optimizing EV charging and discharging schedule 

activities. [18] aims at minimizing the detrimental effect of EV 

charging station load on the electrical network. To achieve their 

goal, they compare eight techniques: modified teaching-learner-

based optimization, JAYA, modified JAYA, ant–lion optimization, 

WOA, grasshopper optimization technique, modified WOA, and 

hybrid whale particle swarm optimization (HWPSOA). The 

objective is to optimize the voltage stability, reliability, and power 

loss (VRP) index of the distribution network (DN) under two 

different cases of operations such as after placing EVCSs alone and 

in the presence of both EVCSs and renewable energy sources. The 

proposed objective function is tested on an IEEE 33 bus-modified 

DN composed of solar PV, wind as the prime sources and fuel cells 

as the supplementary source. The numerical findings show that the 

HWPSOA yields better-quality solutions. Nandini et al. introduce 

a novel demand response and energy storage program tailored for 

multi-energy microgrids (MEM) [19]. Their research presents a 

comprehensive stochastic framework for MEM that accounts for 

uncertainties in energy prices and demands and that addresses the 

simultaneous utilization of multiple energy carriers, including 

cooling, heating, hydrogen storage, and compressed air. It proposes 

a new whale and wavelet transform-based optimization algorithm, 

which overcomes the limitations of conventional optimization 

methods. By considering uncertainties and interactions among 

diverse energy carriers, the program optimizes energy management 

efficiently. Adetunji et al. study the optimal coordinated charging 

of EVs in a centralized charging model using the cost minimization, 

load variance minimization and power loss minimization as 

objective functions [20]. An EV is modelled considering the hourly 

demand, driving/waiting time, battery capacity and energy demand. 

The distributed network operator monitors the grid and aims to 

minimize power losses. WOA yielded best performance for the 

problem. 

3. WOA FOR EVS SCHEDULING 

3.1 Problem Definition 
The proposed method aims to optimally schedule EVs for: (i) 

charging during periods of surplus renewable energy, helping to 

stabilize the grid by addressing the energy peaks, and (ii) 



discharging during periods of renewable energy deficit, which is 

unable to meet demand, supplementing the shortfall of energy. 

Thus, given a set of EVs and a set of CSs deployed in a bounded 

area, the objective is to create a charging/discharging schedule 

𝑆(𝐸𝑉, 𝐶𝑆, 𝑇) for an interval 𝑇 such that: 

𝐸𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒(𝑇) − 𝐸𝑑𝑒𝑚𝑎𝑛𝑑(𝑇) ± 𝐸𝑆(𝑇)  ≅ 0                              (1) 

where Erenewable is the amount of renewable energy available at time 

T, Edemand is the energy demand at time T, while ES is the energy 

charged/discharged by the scheduled EVs at time T. The schedule 

is modeled as an individual in WOA defined as a matrix of 2𝑚 ∗ 𝑛 

dimension where 𝑚 is the number of CSs with two plugs each, and 

n is the number of discrete time slots of the scheduling interval 𝑇: 

𝑆(𝐸𝑉, 𝐶𝑆, 𝑇) = [

𝑠1,1 ⋯ 𝑠1,𝑇

⋮ ⋱ ⋮
𝑠2𝑚,1 ⋯ 𝑠2𝑚,𝑇

]                 (2) 

where 𝑠𝑖,𝑗 > 0 represents the amount of energy the EV scheduled at 

the 𝑖𝑡ℎ plug during the 𝑗𝑡ℎ time slot should charge or discharge. The 

matrix will have elements with zero as value in the cells 

corresponding to the times when no EVs are assigned to the CSs. 

The energy demand profile associated with the EVs schedule S is 

determined considering each discrete time slot 𝑡𝑗: 

𝐸𝑆(𝑇) = [𝐸(𝑡1), … 𝐸(𝑡𝑗) … 𝐸(𝑡𝑇)]       (3) 

𝐸(𝑡𝑗) = ∑ (𝑠𝑖,𝑗)2𝑚
𝑖=1                          (4) 

We consider constraints related to the CSs capacities, EV battery 

constraint and driver preferences, as follows:  

• An EV should be planned to be discharged in the slot 𝑡𝑗 with 

an amount of energy 𝑠𝑖,𝑗 that will not make it go under the 

minimum limit imposed by the driver or battery specification: 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +
𝑠𝑖,𝑗∗100

𝑐𝑚𝑎𝑥
              (5) 

where 𝑆𝑜𝐶𝑚𝑖𝑛 is the battery’s minimum state of charge, 

𝑆𝑜𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the battery’s current state of charge, cmax is the 

battery’s maximum capacity and 𝑠𝑖,𝑗 is the amount of energy 

with which the EV is scheduled to be discharged. 

• The amount of energy 𝑠𝑖,𝑗 with which an EV is scheduled to 

be charged cannot be greater than the EV’s charging capacity 

per discrete time slot (𝐵𝑐𝑎𝑝𝑐𝑖𝑡𝑦):  

𝑠𝑖,𝑗 ≤ 𝐵𝑐𝑎𝑝𝑐𝑖𝑡𝑦                       (6) 

• The amount of energy with which the EV is scheduled to be 

charged/discharged 𝑠𝑖,𝑗cannot be greater than the charging 

station capacity (𝑐𝑠𝑖,𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) per considered time slot: 

𝑠𝑖,𝑗 ≤ 𝑐𝑠𝑖,𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦                           (7) 

• For an energy charging operation, the amount of energy at a 

certain time 𝑡𝑖 should not exceed the surplus of renewable 

energy, 𝐸𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒
𝑠𝑢𝑟𝑝𝑙𝑢𝑠

: 

𝐸(𝑡𝑗) ≤ 𝐸𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒
𝑠𝑢𝑟𝑝𝑙𝑢𝑠

(𝑡𝑖)                              (8) 

• The driver can express some preferences related to the 

maximum distance in kilometers to the CS. 

• The driver can express some preferences related to the time 

slot intervals in which the charging or discharging may be 

scheduled using a binary vector P: 

𝑃(𝑒𝑣𝑛) = [𝑝𝑛,𝑗]                                (9) 

where 𝑝𝑛,𝑗 = 1 encodes that the time slot j is preferred by the driver 

of the EV with id n and 0 otherwise. 

The fitness function consists of two components one that evaluates 

how well the EVs schedule balances the renewable energy 

production and consumption (see relation 1) and one component 

that penalizes individuals who violate the driver's specific 

preferences and defined constraints:  

𝑓(𝑆(𝐸𝑉, 𝐶𝑆, 𝑇)) = 𝑤1 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑆) +  

𝑤2 ∗ 𝑃𝑟𝑒𝑓(𝑆(𝐸𝑉, 𝐶𝑆, 𝑇))            (10) 

where, EnergyComponent is defined using relation 1, w1, w2 ∈
[0,1] , w1 + w2 = 1 are weights that specify the degree of 

importance given to each of the two components.  

To penalize individuals if the preferences of the drivers are not met, 

we use the following relation: 

𝑃𝑟𝑒𝑓(𝑆(𝐸𝑉, 𝐶𝑆, 𝑇))  =  ∑ max(0, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖)𝑘
𝑖=1       (11) 

where 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖 is the penalty given for violating a specific 

preference and k is the total number of preferences. 

3.2 Heuristic Coordination 
We considered that the EVs scheduling matrix is a whale individual 

in WOA. To generate the initial population of whale individuals we 

have used a random approach considering the defined constraints 

and we have reallocated the EVs to CSs, so that most of the 

preferences specified by the drivers are satisfied. The WOA phases 

(search for prey, shrinking encircling, spiral updating position 

mechanism) have been adapted to our EVs scheduling problem. 

In the prey search phase, each individual updates its position based 

on its current position, the position of an individual randomly 

selected from the population, and two coefficient vectors 𝐴, 𝐷⃗⃗⃗: 

            𝑆(𝐸𝑉, 𝐶𝑆, 𝑡 + 1) = 

𝐼𝑁𝑇(𝑆𝑟𝑎𝑛𝑑(𝐸𝑉, 𝐶𝑆, 𝑡) − 𝐴 ∗ 𝐷⃗⃗⃗ + 0.5 )  (12) 

𝐷⃗⃗⃗ = 𝐶 ∗ 𝑆𝑟𝑎𝑛𝑑(𝐸𝑉, 𝐶𝑆, 𝑡) − 𝑆(𝐸𝑉, 𝐶𝑆, 𝑡)           (13) 

INT is a function that takes the integer part from the long variable, 
𝑆(𝐸𝑉, 𝐶𝑆, 𝑡 + 1) is the EV scheduling matrix at time 𝑡 + 1, 

𝑆𝑟𝑎𝑛𝑑(𝐸𝑉, 𝐶𝑆, 𝑡) is an EVs scheduling matrix randomly selected 

from the population,  𝐴  and 𝐶 are coefficient vector defined as: 

𝐴 = 2 ∗ 𝑎 ∗ 𝑟 − 𝑎                         (14) 

𝐶 = 2 ∗ 𝑟                                       (15) 

where 𝑟  is a random vector in the (0, 1] range and a is a value that 

decreases from 2 to 0 linearly through the iterations and is 

computed using the following formula: 

a = 2 − 
2∗𝑖𝑡

𝑖𝑡𝑚𝑎𝑥
                              (16) 

where: 𝑖𝑡-current iteration;  𝑖𝑡𝑚𝑎𝑥 - maximum number of iterations. 

In the shrinking encircling phase, every individual updates their 

position relative to the best individual. In this way all individuals 

are heading to promising regions in the search space. In our 

approach, this is performed using the following formula: 

             𝑆(𝐸𝑉, 𝐶𝑆, 𝑡 + 1) = 

𝐼𝑁𝑇(𝑆𝑏𝑒𝑠𝑡(𝐸𝑉, 𝐶𝑆, 𝑡) − 𝐴 ∗ 𝐷⃗⃗⃗ + 0.5) (17) 



      𝐷⃗⃗⃗ = 𝐶 ∗ 𝑆𝑏𝑒𝑠𝑡(𝐸𝑉, 𝐶𝑆, 𝑡) − 𝑆(𝐸𝑉, 𝐶𝑆, 𝑡)        (18) 

where 𝑆𝑏𝑒𝑠𝑡(𝐸𝑉, 𝐶𝑆, 𝑡) is the best EVs scheduling matrix identified.  

In the spiral updating position phase, each individual’s position is 

updated using the helix-shaped movement mechanism: 

       

𝑆(𝐸𝑉, 𝐶𝑆, 𝑡 + 1) = 𝐼𝑁𝑇(𝐷′⃗⃗⃗⃗⃗ ∗ 𝑒𝑏∗𝑙 ∗ cos(2 ∗ 𝜋 ∗ 𝑙) + 

𝑆𝑏𝑒𝑠𝑡(𝐸𝑉, 𝐶𝑆) + 0.5)(𝑡)         (19) 

𝐷′⃗⃗ ⃗⃗ = 𝑆𝑏𝑒𝑠𝑡(𝐸𝑉, 𝐶𝑆, 𝑡) − 𝑆(𝐸𝑉, 𝐶𝑆, 𝑡)           (20) 

where l is a random number in [-1, 1], e ≈ 2.71 is the Euler’s 

constant, b is a constant for defining the shape of logarithmic spiral.  

The original algorithm equation was designed for continuous space, 

but we're working with discrete space and integers. To work with 

integer energy values, we rounded them in each cell of the EV 

planning matrices to the nearest integer after performing specific 

mathematical operations in the 3 algorithm steps. Additionally, an 

EV might be assigned to different CSs at various times in different 

candidate solutions, or there may be fewer EVs than available slots, 

leaving some matrix positions empty. Thus, we perform element-

wise mathematical operations on energy values, regardless the 

specific EV. The energy value of the EV allocated to 𝐶𝑆𝑖 at time ti 

in the current solution will be updated based on the energy value of 

the EV assigned to 𝐶𝑆𝑖 at time ti from the best solution or from a 

randomly selected solution in the current population (depending on 

the phase in the algorithm), even if it's not the same EV. 

Our algorithm takes as inputs the EVs, CSs, target energy profile, 

WOA relevant parameters and the scheduling interval 𝑇.  

------------------------------------------------------------------------------------------

Algorithm 1: Optimal EVs scheduling using WOA 

-------------------------------------------------------------------------------- 

Inputs: 𝐿𝐸𝑉- electric vehicles, 𝐿𝐶𝑆 - charging stations, 

𝐸𝑡𝑎𝑟𝑔𝑒𝑡(𝑇) energy profile to be matched 

Outputs: Sbest (𝐿𝐸𝑉, 𝐿𝐶𝑆) – the optimal scheduling of EVs at CSs 

Begin 

1. Pop = ∅, Fitness= ∅, 𝐴 = ∅, 𝐶 = ∅, iter = 0 

2. Pop = Generate (𝐿𝐸𝑉, 𝐿𝐶𝑆, popSize, T) 

3. Sopt (𝐿𝐸𝑉, 𝐿𝐶𝑆) = Select-Best (Pop, Fitness (Pop)) 

4. while (it <= itmax)   

5.   for each S (EV, CS) in Pop do 

6.     l = Random(-1, 1), p = Random (0, 1),𝑟 = RandomV (0,1) 

7.     a = Compute (it, itmax), 𝐴 = Update (𝑟, 𝑎), 𝐶 = Update( 𝑟) 

8.     if (p < 0.5) then  

9.        if (|A| < 1) then 

10.         S(𝐿𝐸𝑉, 𝐿𝐶𝑆) = Update (S(𝐿𝐸𝑉, 𝐿𝐶𝑆), 𝐴, 𝐶, Sbest (𝐿𝐸𝑉, 𝐿𝐶𝑆)) 

11.        else 

12.              𝑆𝑟𝑎𝑛𝑑(𝐸𝑉, 𝐶𝑆) = SelectRandom(Pop) 

13.             S (EV, CS) = Update (S (EV, CS), 𝐴, 𝐶, Srand (EV, CS)) 

14.        endif 

15.            S (EV, CS) = Update (S(EV, CS), Sopt (EV, CS), l, b) 

16.     endif 

17.    endfor 

18.    Population = AdjustIndividual(Pop) 

19.    Sbest (EV, CS) = Update-Best (Pop, Fitness (Pop)) 

20.    it =it+1 

21. endwhile 

22. return Sbest (EV, CS) 

End 

-------------------------------------------------------------------------------- 

In the initialization phase (line 2), the initial population of 

individuals (i.e., EV scheduling matrix) is generated by considering 

the list of EVs, the list of CSs, the time interval for each scheduling 

and the dimension of the population. Then the best individual in the 

population is identified based on fitness values (line 3). In the 

iterative phase (lines 4-21), in each iteration, the algorithm updates 

the population of individuals by applying the strategies described 

above (lines 8-16). Then, for every individual in the population, the 

algorithm checks if it is inside the search space (line 18). If it is not, 

it is amended. In our approach we considered that an individual is 

inside the search space if it respects the constraints. The final step 

of the iterative phase is the best individual’ update according to the 

fitness values of the individuals that are part of the updated 

population (line 19). The algorithm returns the best individual, 

which in our case is the best scheduling of EVs for 

charging/discharging at CSs. 

4. Evaluation Results 
This section presents the experimental setup and evaluation results 

discussing also the algorithm deployment in an edge-fog-cloud 

setup. 

4.1 Experimental Results 
To evaluate the proposed approach, we have used a dataset 

comprising information of 80 EVs of the following types: (a) 

Renault ZOE with a battery capacity of 22 kWh and maximum 

charge power of 22 kW (RZ22); (b) Renault ZOE with a battery 

capacity of 41 kWh and a maximum charge power of 22 kW 

(RZ41); (c) Nissan LEAF with a battery capacity of 24 kWh and a 

maximum charge power of 7 kW (NL24); (d) Hyundai KONA with 

a battery capacity of 64 kWh and a maximum charge power of 11 

kW (HK64). Additionally, we have used four CSs, each equipped 

with two Type 2 charging plugs with the charging capacity ranging 

from minimum 2.8 kWh to the maximum of 25.8 kWh.  

Table 1. The evaluation scenarios  

Scenario 
#EVs & 

stations 
#EVs per type SoC 

1: Charge 80(4) 
RZ22: 19; RZ41: 17 

NL24: 26; HK64: 18 

10% - 35% 

2: 

Discharge 
80(4) 

RZ22: 19; RZ41: 23 

NL24: 18; HK64: 20 

75% - 100% 

 

We have fine-tuned the WOA parameters as following: value of 1 

for b, population size between 50 and 200 and for maximum 

number of iterations values between 5 and 45.  

We considered the evaluation scenarios summarized in Table 1. 

Scenario 1 considers renewable energy peaks in the local grid that 

need to be locally consumed by scheduling the charging of EVs 

(Figure 1).  

 

Figure 1: EVs charge scheduling in scenario 1 



It can be noticed that in scenario 1, our proposed solution provides 

a charging schedule which allows EVs to consume the energy 

surplus. Scenario 2 considers congestion in the local energy grid 

due to higher demand than energy production. In this case our 

algorithm schedules the EVs to decrease their overall energy 

demand and discharge their energy to match the energy 

requirements of the local grid (see Figure 2). 

 

Figure 2: EVs discharge scheduling in scenario 2 

Moreover, we can notice that in each scenario, the EVs energy 

profile resulting from the schedule approximates well the target 

energy profiles considered.  

To assess the similarity degree, we have used the Pearson 

coefficient, obtaining a value of 0.978 for Scenario 1 and 0.987 for 

Scenario 2. The Pearson coefficient has a value close to 1 which 

means that the two curves are very similar in the two scenarios. 

WOA performance for EVs scheduling was assessed based on the 

fitness measure. The fitness measures the quality of the solution 

found by WOA and allows us to visually analyze the algorithm’s 

convergence behavior. A converging algorithm will show a 

decreasing trend in the best fitness over iterations, with diminishing 

improvements as it progresses. Figures 3 and 4 show the fitness 

score evaluation for the considered scenarios.  

 

Figure 3: Best fitness value evolution for scenario 1 

We notice that the variations of the fitness value are initially more 

pronounced, but become smoother as the number of iterations 

increases, eventually stabilizing. This means that the algorithm has 

achieved convergence, and it obtained a good fitness value, very 

close to the optimal ones it could achieve. Even if the fitness values 

of the best solutions identified in each scenario, are not zero, they 

are good because, the minimum value we can obtain for fitness 

depends on the number of EVs and the current SoC of each EV. 

 

Figure 4: Best fitness value evolution for scenario 2  

4.2 Deployment in edge-fog-cloud setup 
The proposed solution for EVs coordination can be deployed 

centralized or due to its lightweight nature closer to the edge.  

In the centralized approach, the WOA algorithm runs as a cloud 

service, coordinating EVs daily at a large scale. EVs, regardless 

their geographical location, transmit daily updates to the cloud 

(e.g., current SoC, location). Simultaneously, the cloud service 

predicts the next day’s renewable energy generation using 

historical data and real-time weather information collected from 

external services. Using this data, the cloud service runs the WOA 

algorithm to coordinate the EVs charging and discharging across 

all target regions, providing drivers with the specific times and 

charging station locations. The large amount of data generates a 

large search space that WOA must search for the optimal EVs 

coordination, potentially leading to bottlenecks. Bottlenecks can 

also be caused by communication technologies connecting EVs, 

drivers and renewable energy sources to the cloud, due to limited 

network bandwidth making difficult the transmission of large 

volumes of data to and from the cloud. 

To address the limitations of a centralized system, a decentralized 

edge-fog-cloud architecture can be implemented (see Figure 5). 

 

Figure 5: WOA algorithm deployment in edge-fog-cloud  

In this setup, the following tasks can be offloaded from the cloud 

environment to fog nodes: EVs data collection and processing, 

renewable energy generation prediction, execution of the WOA 

algorithm, and communication of coordination decisions. More 

specifically, the WOA algorithm can be deployed at multiple fog 

nodes, being executed in a decentralized way at the level of 

distributed substations. An instance of WOA is associated to one 

microgrid management, analyzing data and deciding on local EVs 



schedules. In this case, the EVs send their current SoC and location 

directly to the closest fog node minimizing latency and data 

network congestion. Additionally, the prediction of energy demand 

and generation can be federalized as well as the decision making. 

Given the close location of the fog nodes to the EVs, the decision 

time will be decreased, moving the coordination process closer to 

the real time. Moreover, the fog nodes can push the coordination 

decisions and prediction models to the cloud for leveraging on cross 

microgrids knowledge and data further improving the optimization 

process. This decentralized approach, significantly reduces the 

amount of data sent to the cloud, since the workload is distributed 

among multiple fog nodes that handle smaller, localized operations. 

Finally, the lightweight nature of the WOA based coordination 

makes it adaptable, allowing it to operate efficiently directly on 

EVs or even on low-resource devices, such as IoT smart meters 

deployed at microgrid level. Moreover, due to decentralization and 

microgrid partitioning, a larger number of EVs can be coordinated. 

5. Conclusions 
This paper has proposed a lightweight WOA algorithm for 

balancing energy production and consumption. We demonstrate its 

use for the optimal coordination of EVs in their charging and 

discharging processes maximizing the usage of renewable energy 

and compensating for the renewable energy deficit. When a peak 

of renewable energy is registered, EVs are scheduled for charging, 

while in case of renewable energy deficit, EVs are scheduled for 

discharging. Both charging and discharging processes consider 

constraints such as EVs’ battery capacity, charging stations’ 

capacity, distance and time constraints of EVs owners. We 

evaluated the algorithm on a charge and a discharge scenario 

considering 4 types of EVs with different configurations. 

Experimental results are promising, indicating the algorithm 

manages to coordinate the EVs such that the resulting energy 

profile closely matches the renewable energy profile, while the 

considered constraints are mostly met. Moreover, the fitness value 

evolution shows good convergence rate, ensuring that our solution 

can operate efficiently on EVs or even on low-resource devices 

such as IoT smart meters in microgrids. 
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