
Competition: Hashcash on the MSP430 – Intermittent Computing
and Code Optimization

Andreas Könsgen
Jens Dede

Saurabh Band
Shadi Attarha
Anna Förster

{ajk|jd|saurabh|sattarha|afoerster}@comnets.uni-bremen.de
Sustainable Communication Networks

University of Bremen, Germany

Abstract
This work presents our optimizations for a hashing implementation
running an MSP430 microcontroller that operates in minimal and
interrupted power conditions. Depending on the energy source,
we can significantly increase the performance and, thus, the num-
ber of correct solutions. Most performance enhancement results
from storing the program state in non-volatile FRAM. Optimizing
the code yields further acceleration, whereas tuning the compiler
toolchain only gives a minor performance contribution.

CCS Concepts
•Hardware→Chip-level power issues; • Security and privacy
→ Hash functions and message authentication codes.

Keywords
Hashcash, MSP430, Intermittent Computing, Code Optimization,
Software Development Toolchains

1 Introduction
The growing interest in sustainable computing has led to a rise
in the development of energy-harvesting devices, which operate
using intermittent power sources such as solar, thermal, or radio
frequency energy. These devices, while eco-friendly, pose signifi-
cant challenges due to their unpredictable power availability. The
EWSN 2024 Sustainability Competition aims to benchmark the
performance of such intermittently powered devices, specifically
focusing on their ability to handle computationally intensive tasks
under intermittent power conditions. In the challenge, those tasks
are performed by a Texas Instruments MSP430FR5994 microcon-
troller, using HashCash – a proof-of-work hashing algorithm – on a
remotely-controlled testbed with intermittent power. The objective
is to find valid hashes for challenges provided on an external FRAM
as follows:

(1) Read the challenge: Retrieve a challenge from the exter-
nal FRAM. This challenge serves as the input for the hash
computation process and also provides a given difficulty.

(2) Calculate a valid SHA1 hash: Compute a SHA1 hash
based on the challenge. The goal is to find a hash that
meets the specified difficulty level, defined by the number

of leading zeros in the hash. This step requires multiple iter-
ations, as each attempt involves slightly updating the input
and recalculating the hash until a valid result is obtained.

(3) Store the valid result: Once a SHA1 hash meeting the
required difficulty is found, store the result in the external
FRAM memory for later retrieval and validation.

This process is repeated till all given challenges are solved or
the maximum execution time is exceeded. Afterwards, the results
are evaluated and rated. The more correct hashes are calculated,
the better.

Starting from a provided reference implementation, this work
describes how we optimize the calculation of hashes using different
approaches.

2 Our Approach
Ensuring the proper operation in spite of power failures can be
achieved using several methods. We identified three main points:
Firstly, one has to make sure the results are properly stored during
power failure and recovered later. Secondly, optimized computing
functions for the given challenge can give an essential gain and
thirdly, also the compiler can be tuned by optimizing the parameters.
Our investigations reveal that the first step significantly impacts
the outcome under intermittent power. The second step shows a
twofold acceleration with constant power, while the third step has
a minor effect. The following subsections detail our approach.

2.1 Data Storage
Our approach of handling the challenge differs from our initial
expectations. Initially, we believed the main task would involve im-
plementing checkpoints to save the execution state in case of power
failure, focusing on optimizing their placement and frequency due
to the assumed slow speed of flash ROM compared to RAM. How-
ever, the built-in FRAM of the MSP430FR5994 microcontroller op-
erates at 8 MHz and is nearly as fast as SRAM, as confirmed by
our tests and also by the user manual. This eliminated the need for
checkpoint optimization; it is sufficient to place persistent variables
into the internal FRAM instead of using SRAM.

Since this FRAM operates at a lower voltage than the micro-
controller’s processing unit, a slow voltage drop will always cause
the processor to fail before the FRAM. Thus, there is no need for
read-after-write validation to ensure data integrity in the FRAM.

https://orcid.org/0000-0003-0614-7380
https://orcid.org/0000-0002-8422-265X
https://orcid.org/0000-0002-5387-1497
https://orcid.org/0000-0002-4173-5287
https://orcid.org/0000-0001-5755-2672

Könsgen et al.

Selecting the right variables for storage in the internal FRAM is
critical. We avoided placing variables within the SHA functions due
to their short runtime and the large number of variables. Instead,
we stored the challenge counter, solution counter, and the address
for the next correct solution as persistent variables in the internal
FRAM.

To handle potential inconsistencies if power fails during variable
updates, we introduced a status variable to log which variables were
successfully updated. This status variable is also stored in FRAM,
enabling proper reinitialization of the program after a power failure.

2.2 Code Optimization
To maximize overall speed, we focused not only on making the
code resilient to power outages but also on optimizing hash com-
putations.

Since the input messages for the SHA calculations are small,
under 56 bytes, we removed code handling large messages, specifi-
cally sha_init() and sha_update(). The messages for the SHA
computations vary only by the solution counter, placed at the end
of the string. To avoid repeatedly generating the entire message
string inside the generate() function’s loop, we moved the string
preparation outside the loop. This approach requires either recom-
puting the string or storing it in FRAM and recover it after a power
failure.

Decimal formatting of the solution counter, which is also part
of the SHA input string, was replaced with the hexadecimal for-
mat, avoiding time-consuming radix conversion. We also removed
random number generation for each challenge string to reduce
overhead.

For sha_transform(), instead of shifting the values between
variables, we implemented variable rotation directly in each of
the 80 SHA rounds. However, this approach resulted in slower
execution, likely due to the C compiler’s optimizer.

We enabled the UNROLL_LOOP flag in sha_transform() to re-
place the loop which implements the compression function with
linear code.

When expanding the chunk passed to sha_transform() from
16 to 80 words, it might seem beneficial to do so in parallel to the
compression function as suggested by [1]. However, this requires
additional CPU registers, which we avoided since the compression
function itself already allocates a large amount of registers.

The sha_transform() function requires bitwise rotation at dif-
ferent occasions. Since there is no such operator in the C language,
the rotation is implemented with two bit shifts and a bitwise OR
operation. We implemented assembly code using native CPU in-
structions for a direct execution of the rotation, but this also led to
slower execution. Complete implementation of the SHA function in
assembly code may provide more consistent performance by giving
control over machine instructions, circumventing unpredictable
compiler optimizations.

In future work, running code from SRAM instead of FRAM could
significantly accelerate execution, as SRAM eliminates the wait
states required for FRAM access. The FRAM is clocked at 8MHz
whereas the SRAM runs at the CPU speed of 16MHz. Small code
fragments which run locally, e.g. loops, can benefit from the micro-
controller’s the FRAM cache which however has a size of only 32

bytes. For larger code, the program can copy a function to SRAM,
however given SRAM’s limited size of 4 kilobytes, only critical
parts, like the compression function, should be placed there, with
provisions for reloading after power failures.

Furthermore, parts of the hash function could be precomputed
since most of the input message remains constant between solution
attempts. Inside the search for a solution of a challenge, it is only
the solution counter which changes between two consecutive input
messages for the SHA function, and this counter is placed at the end
of the input string. Additionally, preloading the challenge strings
from external to internal FRAM could allow immediate processing
after power failures.

Assembly implementation is necessary for these optimizations
and also by itself yields further acceleration. However, the com-
pexity of working with assembly language requires local debugging,
whichwas not possible due to the lack of an availableMSP430FR5994.
Hence, the current C implementation in our case represents the
best achievable solution under these constraints.

2.3 Compiler Optimization
The used GNU C compiler offers also some potential optimizations.
One are the compiler flags. The flags are usually set for minimum
size and best compatibility. Here, we optimize those for speed and
the given code.

We achieved enhancements by replacing the compiler flag for
size optimization -Os, which is Energia’s default setting, by -O2
(speed). This enables some additional optimizations which are oth-
erwise left out because they require additional memory footprint.
Since the FRAM size of the MSP430 is, however, sufficiently large,
this does not result in problems. Setting this flag to -O3 or -Ofast
decreases the performance, which shows the sometimes unpre-
dictable behaviour of the compiler which we already discussed in
the context of code optimization.

Also, we considered that the version of the MSP430 GNU C
compiler used in the Energia IDE (4.6.3) is outdated, since Energia
is no longer maintained since some years. Therefore, we evaluated
the most recent compiler provided by Texas Instruments (9.3.1.11
and 8.3.1.25) and adapted the code accordingly. However, using the
updated toolchain did not yield any enhancement, in contrary the
execution speed was slightly slowed down. Therefore, we decided
to stick to the version 4.6.3.

3 Conclusion
In this paper, we outlined our strategies for implementing and opti-
mizing HashCash on the MSP430FR5994 in environments with in-
termittent power, highlighting the capabilities of energy-harvesting
devices for handling computationally intensive tasks. Through var-
ious techniques, including storage optimization, code refinement,
and strategic compiler flag selection, we achieved performance
improvements of up to the factor of two. However, further opti-
mizations would necessitate direct access to the hardware, which
was not feasible in our case.

References
[1] C. Franck and J. Großschädl: Optimized Implementation of SHA-512 for 16-bit

MSP430 Microcontrollers. In Proc. International Conference on Information Tech-
nology and Communications Security, pp. 86-99. Springer, 2021.

	Abstract
	1 Introduction
	2 Our Approach
	2.1 Data Storage
	2.2 Code Optimization
	2.3 Compiler Optimization

	3 Conclusion
	References

