
Competition: ShiSHA-1: Ligthning-Fast SHA-1 Implementation
for Energy-Constrained Devices

Antonio Escobar-Molero
antonio.escobar@infineon.com

Infineon Technologies AG
Neubiberg, Germany
RedNodeLabs UG
Munich, Germany

Alberto Martín Martín
martmartalb@correo.ugr.es
Universidad de Granada

Granada, Spain
eesy-innovation GmbH
Unterhaching, Germany

Juan Cruz-Cozar
juan.cruzcozar@infineon.com
Infineon Technologies AG

Neubiberg, Germany

Jirka Klaue
jirka.klaue@airbus.com

Airbus SE
Hamburg, Germany

ABSTRACT
Intermittent computing requires the design of algorithms able to
work with unpredictable power availability. The goal of ShiSHA-1 is
to compute SHA-1 hashes as fast as possible in the MSP430, saving
non-volatile checkpoints until finding the solution to a predefined
set of Hashcash challenges. Our techniques to reduce the compu-
tation time of the algorithm also decrease its memory footprint
and power consumption. Optimizations are done at the algorithm-,
assembly- and system- levels to achieve a SHA-1 block execution
of 155 µs in the 16-bit MSP430FR5994 operating at 24 MHz.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
Intermittent Computing, Energy Harvesting, Efficient Firmware
Development, Embedded Benchmarking

1 INTRODUCTION
Intermittent computing techniques allow low-power devices to
operate without batteries; typically using energy harvesters in envi-
ronments with fluctuating power availability. The goal is to perform
as much work as possible when energy is available, efficiently stor-
ing checkpoints in non-volatile memory to retain the progress
when the power is cut off. As a toy benchmark, it is proposed
to compete on solving Hashcash [1] proof-of-work challenges,
given unpredictable time and energy budgets and using the 16-
bit MSP430FR5994 MCU powered by a voltage source following an
arbitrary waveform. Since there is no storage element and the volt-
age is independent of the current consumption, the optimal strategy
is to perform as much work as possible when the voltage is above
the minimum turn-on threshold of the MCU, e.g. by overclocking
and optimizing the code for speed. The main goal of ShiSHA-1 is
to minimize the execution time of each individual round of the
SHA-1 algorithm to maximize the chances of solving the challenges
within the available computing time. Presented techniques can be
used as inspiration on how to maximize the energy efficiency in
constrained devices when performing complex computations.

2 SPEEDING-UP SHA-1 FOR THE MSP430
Hashcash proofs are based on the SHA-1 cryptographic hash func-
tion. SHA-1 works by breaking the input into 512-bit blocks. The
Hashcash string is normally short enough to fit into a single block.
It then undergoes a series of operations, including bitwise logical
functions, modular additions, and rotations, across 80 rounds of
computation. SHA-1 is designed to create a unique 160-bit hash
for a given input, making it computationally infeasible to reverse-
engineer or find two different inputs that produce the same hash.
MSP430 MCUs are ultra-low power devices, with limited memory
and computing capabilities. Furthermore, working with a 16-bit ar-
chitecture adds particular challenges when dealing with the 32-bit
operations used in SHA-1. Multiple optimizations at different levels
are required to achieve fast and energy-efficient operation.

2.1 Algorithm-Level Optimizations
The word length of the SHA-1 algorithm is 32-bit. It requires a 80-
word buffer for storing the word sequence, labeled W[0], W[1],...,
W[79]; and a 5-word buffer to save the statewords, labeledA,B,C,D,E.
The algorithm requires precomputing the whole words sequence
and then running an 80-round scheme to sequentially update the
state words. Alternatively, the computation of the word sequence
and state functions can be interleaved, saving memory since only
a 16-word circular array is required [2]. As a design choice, we
sacrifice memory by not interleaving the computation, obtaining
first the complete word sequence before executing the 80-round
state functions. This is done in order to minimize the execution time
for this particular architecture, in which an interleaved approach
would complicate an efficient register allocation.

While it is impractical to speed-up independent hash calculations
of non-related input messages, the fact that successive Hashcash
attempts share most of the characters enables using some tech-
niques to accelerate the computation of the algorithm. A number
of intermediate results can be precomputed in the first round and
reused in successive rounds, until the solution is found. Similar
ideas have been previously exploited when cracking password-
based key derivation functions based on SHA-1 [4]. By keeping
the variable part of the solution in W[7] we can use the following
properties: (1) W[0] to W[6] are constant, (2) W[9] to W[14] are



Antonio Escobar-Molero, Alberto Martín Martín, Juan Cruz-Cozar, and Jirka Klaue

zero. We also use a fixed number of alphanumeric characters in
the user random as the variable part, further allowing to keep the
padding and length of the string constant, so (3) W[8] and W[15]
are also constant. Given (1), (2) and (3), the following optimizations
apply:

• OPT-1: The number of required XORs to compute the 80-
word sequence is reduced from 192 to 147.

• OPT-2: The number of rounds for the update of the state
words is reduced from 80 to 73. Furthermore, rounds 9 to
14 are faster since their respective word is zero and does
not need to be loaded from memory and added.

2.2 Assembly-Level Optimizations
While high-level programming languages boost productivity by of-
fering abstractions and easier syntax, they often sacrifice efficiency,
especially in resource-constrained environments. This overhead
can be detrimental to performance and energy usage. We have de-
veloped the time-critical SHA-1 algorithm completely in MSP430
assembly, obtaining dramatic gains. It showcases how low-level
programming is still relevant and compilers are not to be blindly
trusted, even at the highest optimization levels. Many small op-
timizations have been introduced, like minimizing memory load
and store operations or trying to avoid instructions with expensive
addressing modes. Additionally, we exploit as much as possible the
limited instruction set. As an example, in each round left rotations
of 5- and 30-bit are required. In MSP430, the most straightforward
implementation is to perform the rotations bit by bit using three
assembly instructions per bit (RLA, RLC, ADC). To optimise this,
the 30-bit left rotation is replaced with an equivalent 2-bit right ro-
tation, while the 5-bit left rotation is done with the 32-bit hardware
multiplier, saving a few cycles. In particular, we can highlight some
optimizations related to the most time-consuming section of the
algorithm, the 80-round update of the state variables:

• OPT-3: The strategy during the 80 rounds is to always keep
the state variables (A, B, C, D, E) in the CPU registers, re-
quiring two 16-bit registers for each (R4-R13). R14 and R15
are used for temporal calculations, which gives just enough
registers to minimize memory accesses and maximize oper-
ations involving only registers (with only 1 clock cycle cost).
Memory accesses in round i are only needed to load the
respective W[i] and the constant required for that round.
As a trick, the stack pointer register, SP, is also used as a
general-purpose register, since an additional register for
storing memory pointers to retrieve W[i] enables faster
operation in indirect autoincrement mode (2 clock cycles)
than using the absolute addressing mode (3 cycles).

2.3 System-Level Optimizations
We implemented several key strategies aimed at improving the per-
formance for the MSP430FR5994. First, we overclocked the system
to 24 MHz, which is out-of-specs, but the system remained stable
at this frequency. However, code execution from FRAM causes a
bottleneck, since it cannot be accessed at frequencies above 8 MHz
and a small instruction cache is used, which suffers from frequents
misses in the large SHA-1 routine. To address this, we moved the
SHA-1 function into SRAM, ensuring that it can run without being

constrained by the speed of code fetching. Nevertheless, with only
8KB of SRAM available, we faced significant space limitations. The
fully-unrolled implementation of SHA-1 only fitted in SRAM after
applying the assembly-level optimizations mentioned earlier, which
significantly reduced the memory footprint. FRAM is still briefly
used during the program as an efficient mechanism for storing
non-volatile checkpoints after each hash calculation.

• OPT-4: The main routine is relocated to SRAM to avoid a
critical bottleneck caused by the slower access speed of
FRAM. This has also the advantage of a reduction in the
supply current, since misses from the FRAM instruction
cache significantly increase power consumption [3].

• OPT-Startup: Moving the function to SRAM notably in-
creases the startup time, since the whole function needs to
be copied from the FRAM during the initialization. Since
we practically fill the whole SRAM this may take a few
tenths of milliseconds, what would prevent the program
to reach the next checkpoint in a worst-case scenario in
which only very short bursts of energy are available. To
prevent this, we increase the clock frequency to 24 MHz
before the C-startup code, decreasing the startup time to a
few milliseconds.

3 CONCLUSIONS
Tested compilers (GCC, IAR, TI) for MSP430 are not able to compete
in terms of speed with a properly designed assembly implementa-
tion, since for a complex function they introduce inefficiencies in
register allocation, increased memory store-and-load with expen-
sive addressing modes and do not fully take advantage of potential
gains provided by special CPU instructions. Overclocking the CPU
to 24 MHz proved effective and energy-efficient only when paired
with SRAM execution. With all the optimizations, including over-
clocking before the C-startup routine, the system is able to finish
the first SHA-1 block and reach the initial checkpoint in only a few
milliseconds, while subsequent checkpoints are reached every 155
µs, enabling operation even in the harshest environments.

Table 1: Time to compute a SHA-1 block at 24 MHz after suc-
cessively applying the proposed optimizations. Architecture-
specific OPT-3 and OPT-4 provide the highest gains.

OPTs Time Delta from previous row
Naive 640 µs C-compiled with speed optimizations

1 600 µs Precomputation of constant XORs
1, 2 560 µs Optimizing rounds in the state words

1, 2, 3 220 µs Assembly implementation (∼ 2.5× faster)
1, 2, 3, 4 155 µs Execution from SRAM (∼ 1.4× faster)

REFERENCES
[1] Adam Back et al. 2002. Hashcash-a denial of service counter-measure. http:

//www.hashcash.org/papers/hashcash.pdf Accessed: 2024-09-25.
[2] D. Eastlake and P. Jones. 2001. RFC3174: US Secure Hash Algorithm 1 (SHA1).
[3] Texas Instruments. 2016. SLAA728: Optimizing Active Mode Current Consumption

on MSP Devices. Technical Report.
[4] Andrea Francesco Iuorio and Andrea Visconti. 2019. Understanding optimizations

and measuring performances of PBKDF2. In 2nd International Conference on
Wireless Intelligent and Distributed Environment for Communication: WIDECOM
2019. Springer, 101–114.

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf

	Abstract
	1 Introduction
	2 Speeding-Up SHA-1 for the MSP430
	2.1 Algorithm-Level Optimizations
	2.2 Assembly-Level Optimizations
	2.3 System-Level Optimizations

	3 Conclusions
	References

