
Competition: Work Smarter, not Harder:
Towards a Sustainable IoT

Johannes Göpfert ∗
johannes.goepfert@tuhh.de

Hamburg University of Technology

Sayedsepehr Mosavat ∗
sayedsepehr.mosavat@uni-due.de
University of Duisburg-Essen
sayedsepehr.mosavat@hsnr.de

Niederrhein University of Applied
Sciences

David Glomsda
david.glomsda@hsnr.de

Niederrhein University of Applied
Sciences

Kamil Kaznowski ∗
kamil.kaznowski@tuhh.de

Hamburg University of Technology

Pedro José Marrón
pjmarron@uni-due.de

University of Duisburg-Essen

Bernd-Christian Renner
christian.renner@tuhh.de

Hamburg University of Technology

Matteo Zella
matteo.zella@hsnr.de

Niederrhein University of Applied
Sciences

ABSTRACT
Batteryless devices offer remarkable opportunities for attaining
the vision of a large-scale yet sustainable Internet of Things. How-
ever, their stringent energy budget also introduces challenges that
must be addressed before such devices can be utilized effectively.
Energy-efficient, intermittence-aware operation is one of such chal-
lenges. In this work, we present an approach to tackle this issue
in the context of executing a proof-of-work algorithm on a low-
power computation core. Our proposed techniques significantly
improve the computation efficiency even in the face of frequent
and unpredictable power loss events, a characteristic of batteryless,
intermittently operating devices.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; •
Software and its engineering→ Software design tradeoffs.

KEYWORDS
batteryless operation, Hashcash, proof-of-work algorithm, SHA-1

1 INTRODUCTION
Attaining the vision of a planet-scale Internet-of-Things (IoT) re-
quires the deployment of billions of ultra-low-power devices [3].
Relying on traditional batteries as the primary energy supply of
these many devices not only imposes a tremendous maintenance
overhead in the long run but also comes at a substantial environ-
mental cost. Therefore, batteryless operation has been introduced
by the research community in the past few years to tackle this
challenge [1]. Batteryless devices store the energy they can harvest
from their environment in small energy buffers and use that energy
as soon as enough has accumulated. This limited energy supply
leads to batteryless devices operating intermittently, facing several
challenges that must be addressed carefully. One of these challenges
is ensuring forward progress, meaning that after a power loss, the

∗The authors contributed equally to this work.

Algorithm 1 Hashcash

𝑠𝑡𝑒𝑚 = makestem(𝑛, 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒, 𝑟𝑎𝑛𝑑)
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
while True do

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ← 𝑠𝑡𝑒𝑚 + str(𝑐𝑜𝑢𝑛𝑡𝑒𝑟)
if SHA1(message) has n leading zeros then

return message
end if
𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

end while

device ideally continues its operation where it was forced to stop
due to energy depletion [5].

This work presents our approach to tackle the EWSN’24 Sustain-
ability Competition, which aims at evaluating the performance of
intermittent computing systems. Therefore, a proof-of-work algo-
rithm, namely Hashcash [2] (See Algorithm 1), is executed on an
ultra-low-power processing core, i.e., the TI MSP430FR5994 MCU.
To emulate power intermittency and to provide a framework for the
evaluation, the E-Cube testbed [7] is used. Goal of the challenge is
to calculate as many solutions to the Hashcash problem as possible
despite intermittency within a given time frame.

2 PERFORMANCE IMPROVEMENTS
When executing a proof-of-work algorithm like Hashcash on a
resource-constrained device, optimizing the algorithm for computa-
tion efficiency is crucial since performing unnecessary operations
consumes valuable time and energy. The cornerstone of Hashcash
is the calculation of SHA-1 hashes. Thus, significant improvements
can be achieved by optimizing this step. Algorithm 2 shows a simpli-
fied version of the SHA-1 algorithm [6]. The hash calculation starts
with an array𝑊 consisting of 80 32-bit words, which is derived
from Hashcash’s challenge string.

Regarding SHA-1, we made the following general optimizations:
O1: Reimplementing SHA-1 in Assembly.
O2: Transforming ROTL(30, 𝑐) into a ROTR(2, 𝑐).

https://orcid.org/0009-0004-5619-7815
https://orcid.org/0000-0002-3349-5228
https://orcid.org/0009-0003-8288-5681
https://orcid.org/0009-0006-1931-6170
https://orcid.org/0000-0001-7233-2547
https://orcid.org/0000-0002-6936-6444
https://orcid.org/0000-0003-1830-9754

Göpfert, Mosavat, et al.

Algorithm 2 SHA-1 (Simplified)

𝑊 [0 : 13] ←𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ⊲ Initialize SHA-1 message block
𝑊 [14 : 15] ← length(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)
for 𝑖 ← 16 to 79 do ⊲ 1. Message extension

𝑊 [𝑖] ← ROTL(1,𝑊 [𝑖−3] ⊕𝑊 [𝑖−8] ⊕𝑊 [𝑖−14] ⊕𝑊 [𝑖−16])
end for
(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ← 𝐼𝑉 ⊲ Initial values
for 𝑖 ← 0 to 79 do ⊲ 2. Message processing

𝑡 ← ROTL(5, 𝑎) + 𝑒 + 𝑓𝑖 (𝑏, 𝑐, 𝑑) + 𝐾𝑖 +𝑊 [𝑖]
𝑒 ← 𝑑 ← 𝑐 ← 𝑏 ← 𝑎 ← 𝑡

𝑐 ← ROTL(30, 𝑐)
end for
return (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) + 𝐼𝑉

O3: Rearranging operations to obtain a register-only computation.
O4: Loading SHA-1 related functions into RAM at startup.
Compared to the C implementation that requires 25000 CPU cycles,
this optimized approach needs only 5300 cycles.

The SHA-1 message for Hashcash has the following fixed format,
where the values of n, resource and rand are fixed for each chal-
lenge, while the value of 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 must be determined by iteration.:

1:<n>:240415:<resource>::<rand>:︸ ︷︷ ︸
𝑊 [0:7] = 𝑠𝑡𝑒𝑚

𝑐𝑜𝑢𝑛𝑡𝑒𝑟

We observe that, by the nature of Hashcash, the values of
𝑊 [0 : 7] are fixed throughout each challenge and incrementing
the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 only changes the values in𝑊 [8 : 12]. Thus, instead
of recomputing the entire message extension for each new 𝑐𝑜𝑢𝑛𝑡𝑒𝑟

value, we employ a precomputed look-up table to flip the relevant
bits and then apply that to the previously expanded message. The
new message extension is then calculated as follows, leading to
an improvement of about 17 % for the calculation of one hash:

𝑊new =𝑊old ⊕ LUT[idx(𝑐𝑜𝑢𝑛𝑡𝑒𝑟new, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟old)]

Due to the fixed 𝑊 [0 : 7] it is furthermore possible to
precompute the first eight iterations of the message processing
loop. Avoiding these calculations for each new 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 value leads
to an improvement of roughly 10 % for calculating one hash.

3 ENSURING FORWARD PROGRESS
When a device suffers a power loss, the state of volatile memory is
lost. Therefore, the current progress must be saved in non-volatile
memory, i.e., the internal FRAM of the utilized MCU. We consid-
ered two approaches for ensuring forward progress: 1. Using the
Compute-Through-Power-Loss (CTPL) [4] library; 2. employing a
lightweight, checkpoint-based approach to store a minimal amount
of data in the FRAM.

The CTPL library mainly aims to create backups of the RAM con-
tent and store them in the FRAM before a power loss. To utilize this
library effectively, however, it is crucial for the device to reliably
detect a power loss event moments before it happens. Nonetheless,
due to the hardware setup of the evaluation testbed, such events
that can happen in the context of the competition are independent
of the device’s energy consumption, making them challenging to
predict beforehand. Since it is not possible for the device to accu-
rately predict power failures, using a lightweight checkpointing

scheme will lead to a more reliable and efficient solution compared
to the CTPL library. In addition, as previously discussed, we move
several functions used for the SHA-1 computations to the RAM
during startup. Therefore, in the face of frequent, unpredictable
power loss events, the CTPL library would incur a relatively high
overhead for copying the RAM contents to the non-volatile FRAM.
Avoiding the CTPL library allows us to use such periods to make
further progress with the calculations of SHA-1 hashes.

Consequently, we opt for a checkpoint-based approach. Since
storing a value in FRAM only comes with a small overhead, it
is possible to make checkpoints frequently. For this, the overall
task is split into small, independent parts, i.e., iterations of the
SHA-1 hash calculations. We store the Hashcash 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 in FRAM
so that after a power loss, the device can again continue with the
last SHA-1 iteration, during which the device ran out of power.
After solving a challenge successfully, we store the number of
solved challenges and the external FRAM position on which the
last solution was stored on the non-volatile memory of the MCU.
Storing these values is necessary to enable the device to continue
working on the correct challenge after a power loss event and
subsequently write the resulting solution in the correct area of the
external FRAM holding the solutions. Since these two values must
always be consistent and modified together atomically, we employ
a ping-pong buffering scheme to prevent potential state corruption.

4 CONCLUSION
The presented work proposes several optimizations to tackle the
challenge of efficiently performing energy-intensive computations
despite unpredictable and frequent power losses. To achieve this
goal, we apply low-level modifications to the underlying PoW-based
task to improve the overall performance of the firmware. Moreover,
we employ a lightweight checkpointing scheme to ensure efficient
forward progress under unfavorable energy availability that can
lead to intermittent operation. The introduced approaches have the
potential to inspire more efficient, intermittence-aware solutions
suited for batteryless devices, ultimately facilitating the realization
of a sustainable, large-scale Internet of Things.

ACKNOWLEDGMENTS
This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) as part of the “DI2T” project
(project number 492151098), as well as by the Niederrhein
University of Applied Sciences as part of the “ABORA” project.

REFERENCES
[1] Saad Ahmed et al. 2024. The Internet of Batteryless Things. Commun. ACM 67, 3

(2024), 64–73.
[2] Adam Back. 2002. Hashcash - A Denial of Service Counter-Measure. http:

//www.hashcash.org/papers/hashcash.pdf Accessed on September 20, 2024.
[3] Albert Cohen et al. 2018. Inter-disciplinary research challenges in computer

systems for the 2020s. National Science Foundation, USA, Tech. Rep (2018).
[4] Texas Instruments. 2015. Intelligent System State Restoration after Power Failure

with Compute Through Power Loss Utility. https://www.ti.com/tool/TIDM-
FRAM-CTPL Accessed on September 20, 2024.

[5] Brandon Lucia et al. 2017. Intermittent computing: Challenges and opportunities.
In SNAPL 2017.

[6] National Institute of Standards and Technology (US). 2015. Secure hash standard.
Technical Report. Washington, D.C.

[7] Markus Schuß and Carlo Alberto Boano. 2024. E-Cube: Towards a First Bench-
marking Facility for Battery-Free Systems. In Proceedings of the 4th International
Conference on Information Technology for Social Good (GoodIT). 399–403.

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
https://www.ti.com/tool/TIDM-FRAM-CTPL
https://www.ti.com/tool/TIDM-FRAM-CTPL

	Abstract
	1 Introduction
	2 Performance Improvements
	3 Ensuring Forward Progress
	4 Conclusion
	Acknowledgments
	References

