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Abstract
This demo presents FITA, a platform that automates the manage-
ment of resource-constrained Far-Edge devices by integrating them
into Kubernetes. The demo setup is composed of an Edge gate-
way that runs FITA and the consumer application, as well as five
commercial Far-Edge devices that host the services managed by
Kubernetes. We demonstrate FITA capability to deploy and migrate
services based on service requirements.

CCS Concepts
• Computer systems organization → Cloud computing; Em-
bedded software; • Software and its engineering → System
administration.
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1 Introduction
The concept of the Internet of Things (IoT) as a fully interconnected
digital environment ismaterializingwith a steady 13% to 20% annual
increase in connected devices [1]. This growth enhances the role of
Edge Computing in IoT ecosystems, enabling local (pre-)processing
of data to enhance network efficiency, safeguard privacy, and im-
prove response times [2].

Edge Computing can leverage TinyML and advancements in
microcontroller architectureto expand computation offloading be-
yond local data centers and network devices, enabling AI tasks
to run directly on the resource-constrained devices that interact
with their environment, hereupon referred to as Far-Edge devices.
Far-Edge devices are typically equipped with pre-installed software,
requiring on-site maintenance and updates [3]. Integrating them
with current practices for Internet applications, such as orches-
tration, continuous integration/continuous deployment (CI/CD),
and Service-Oriented Architectureswould maximize their potential
by enabling unified management across IoT applications, from the
Cloud to the Far-Edge, facilitating seamless service deployment,
updates, and connectivity.

Efforts to extend orchestration tools beyond the Cloud have
mainly focused on the Edge, often neglecting the Far-Edge. Projects
like Akri1 and KubeEdge2 have connected Far-Edge devices to Ku-
bernetes (k8s), the de facto tool for service orchestration, but they
do not consider the possibility of deploying services directly onto
∗Both authors contributed equally to this research.
1https://docs.akri.sh/
2https://kubeedge.io/

these devices despite their growing computational power. To ad-
dress this, we propose the Far-edge IoT device mAnagement (FITA)
platform, which supports software deployment and management
on Far-Edge devices and integrates their specific details into k8s.

This demo shows how we can leverage the FITA platform to
deploy and manage a simple IoT application. It highlights the initial
deployment of its services to devices with specific resources and
shows howwe can rely on the orchestration process of k8s to handle
node malfunctions.

2 System Architecture

Figure 1: High-level system architecture of the FITA demo.

Figure 1 presents the architecture of the demo, which is com-
posed of FITA (cf. 1) to manage the services on the Far-Edge and
the Application (cf. 2) that consumes the data from the services that
run on the Far-Edge.

FITA is composed of:
• embServe[4] framework that runs in the Far-Edge devices.

It implements a service-oriented architecture for devices
that do not support traditional techniques for software
deployment (i.e., containers) by leveraging dynamic code
loading;

• NextGenGW[5] that ensures interoperability regarding Far-
Edge communication protocols by homogenising and ex-
posing Far-Edge device properties and capabilities with the
MQTT protocol and IETF SDF;

• Far-Edge Node Watcher that uses NextGenGW abstraction
to know the available Far-Edge devices and keeps the k8s
cluster updated by launching or removing Far-Edge Kubelet
Pods as the devices connect/disconnect from NextGenGW;
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• Far-Edge Kubelet built on top of the Virtual Kubelet3 which
provides a virtual representation of the Far-Edge device
in the k8s cluster. It is responsible for the deployment of
application components on the Far-Edge devices using the
NextGenGW. One instance of this application is running
per device.

The Application is composed of two Pods. The first Pod (cf. 3)
contains a simple Python module that subscribes (Sensor Data
Consumer) to the sensor data of the Far-Edge devices using the
NextGenGW, converts it to a format compatible with the Telegraf
socket listener input plugin, and publishes it (Sensor Data Publisher)
to Telegraf. The second Pod (cf. 4) contains a traditional dashboard
stack, where Telegraf inserts data into the InfuxDB database that
Grafana reads and serves in a user-facing dashboard.

Figure 2: Overview of the FITA demo setup.

Figure 2 provides an overview of the demo setup. The gateway
layer is implemented using an Intel NUC 13 Pro running the mi-
crok8s distribution (v1.29.4), where we deploy FITA and the Applica-
tion. The NUC serves aWi-Fi access point to provide connectivity to
the laptop and to the Far-Edge devices. We use 5 Kallisto modules4
with a Wi-Fi add-on as Far-Edge devices. Each module contains a
different set of sensors where 3 of the modules are equipped with
temperature sensors. The laptop shows the Grafana dashboard and
sends the deployment commands to k8s.

3 Service Deployment
We configured the Grafana dashboard to show temperature data
for two sources. By default, no service is available on the Far-
Edge devices, so no data is shown on the dashboard. Therefore,
we request the Deployment detailed on Listing 1 that asks the
k8s scheduler to deploy two replicas of a Pod with a container
named temperature, which contains the Far-Edge temperature ser-
vice. The deployment requires a Node with a temperature sensor
(extra.resources.fhp/temperature_sensor) and running embServe (ex-
tra.resources.fhp/embserve), as depicted by the Node selector (cf.
lines 21 to 23). Naturally, the devices without temperature sensors
are rejected, and the scheduler selects two of the three possible
devices. Afterwards, the k8s scheduler sends the create Pod com-
mand to the Far-Edge Kubelet of the selected devices, which fetches
the image fhp/temperature_sensor:0.0.1 from the local OCI image
registry and deploys it using NextGenGW and embServe. After
deployment, the new instances of temperature sensors are reported
by NextGenGW, the Sensor Data Consumer starts receiving the
sensor data, and the Sensor Data Publisher forwards it to Telegraf.

3https://virtual-kubelet.io/
4https://sensry.net/products/

Listing 1: Temperature service Deployment in YAML.
1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: temperature -deployment

5 labels:

6 app: temperature

7 spec:

8 replicas: 2

9 selector:

10 matchLabels:

11 app: temperature

12 template:

13 metadata:

14 labels:

15 app: temperature

16 spec:

17 containers:

18 - name: temperature

19 image: fhp/temperature_sensor :0.0.1

20 imagePullPolicy: IfNotPresent

21 nodeSelector:

22 extra.resources.fhp/embserve: "true"

23 extra.resources.fhp/temperature_sensor: "true"

4 Service Recovery
In the Deployment detailed by Listing 1, we set the number of
replicas of the Pod to two. This is one of the significant advantages
of k8s, which allows users to define the desired state of the cluster.
The Kubernetes Deployment Controller automatically handles the
necessary changes to enforce this state, so when a Deployment
degrades (i.e., a Node abandons the cluster), the Controller will
redeploy services as needed. Therefore, to simulate this scenario,
we select one of the devices previously selected for deployment and
remove its power supply, simulating a malfunction. The Far-Edge
Node Watcher detects that the device is no longer connected to
NextGenGW and deletes the Far-Edge Kubelet. This signals the k8s
scheduler that the Node is no longer available, which triggers the
deployment of a new instance of the Pod in the remaining device,
ensuring minimal disruption in the Application.
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