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ABSTRACT
There is an increasing need to use low-cost sensors to monitor
environmental harms that urban residents are exposed to around
the globe. One of the hurdles in achieving this goal is optimizing
where to place a limited number of sensor nodes to gather useful
data. This poster describes an exploration of low-cost sensor reading
correlationwith respect to the heterogeneity of urban environments.
Using data from Boston and Chicago, USA, the findings show that
sensor nodes on a medium flushing road show expected correlation
levels within about 750 meters from each other. These findings lay
the groundwork for future urban environmental sensor network
design considerations and techniques.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Ap-
plied computing→ Environmental sciences.
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1 INTRODUCTION
Billions of people around the globe live in cities where they are
exposed to environmental hazards such as extreme heat and air
pollution [8, 13]. These harms are currentlymost typicallymeasured
by geographically sparse regulatory monitors, making it difficult
to determine the areas and residents most affected given the fine-
grained heterogeneity of these harms. Dense networks of low-cost
environmental sensors can help identify urban areas that are most
negatively impacted by environmental hazards [3], paving the way
for targeted policies and mitigation strategies [4]. However, city
governments generally have a limited budget and determining
where to place a finite set of nodes to gather a representative set
of city data remains an open question. Under the assumption that
environmental hazards are generally static within a certain radius,
nodes are often optimized for placement based purely on distance
from other nodes [12]. However, the presence and variation of
urban form, hetereogeneity of emissions types, and changing wind
patterns caused by street canyons and varying road types have all
been shown to affect the levels of environmental hazards [7] and
can all vary greatly within 1 square kilometer.

This work aims to evaluate the correlation of fine particulate
matter, PM2.5, readings as a function of distance to explore 1) how
the street flushing type affects the correlation of readings between
sensors and 2) what density of sensors is required in different areas
to achieve a desirable level of data representativeness. Using data
from the Eclipse sensor network in Chicago, Illinois [3] and a set
of field experiments in Boston, Massachusetts, the correlations of
near-simultaneous data from pairs of PM2.5 sensors were calcu-
lated. The distance between and surrounding urban area of the

sensors were then considered to determine which physical urban
features might affect the flow of pollutants and thus the design of
an urban environmental sensor network. The expectation was that
sensor reading correlations would decrease as distance between the
sensors increased, and that the rate of decrease would differ based
on surrounding urban features. The findings indicate that sensor
pairs within 750 meters of each other on a single medium flushing
street exhibit a small linear decrease in reading correlation with
increased distance. Sensor pairs on high and low flushing streets
reveal greater variance in reading correlations, offering insight into
the density of sensor nodes required in different areas based on
urban form.

2 RELATEDWORKS
Capturing ground-truth data to measure the heterogeneity of envi-
ronmental hazards in a city is virtually impossible given the fine-
grained heterogeneity of these hazards [6]. Thus, researchers have
begun to examine methods to estimate how representative low-cost
sensor network data are based on predicted values from computa-
tional models utilizing data fusion strategies [5, 14]. However, these
approaches result in residual uncertainty due to simplifications and
estimates in proxies used. For example, these techniques often do
not account for urban form and features such as buildings, instead
viewing the monitoring area as a two-dimensional plane with traffic
patterns [5]. This is at odds with the inherently three-dimensional
nature of cities and with prior research indicating that urban form
can complicate the accuracy of urban environmental models [7].

In particular, the street flushing type, which is calculated based
on the road width to building height ratio, has been classified into
three categories based on the fundamental physics of how the
ratio affects the flushing of air pollutants in urban settings [14].
In low flushing streets air pollution can be much higher than the
average found in other locations in a city [13] due to the trapping
of eddies that limits ventilation of air in this area to the upper
atmosphere [9, 13]. Conversely, high flushing streets are wide with
low, or perhaps no, buildings on both sides, allowing for a high level
of communication with the overlying atmosphere and thus dilution
of pollution into this larger air mass [9, 11]. Medium flushing streets
are characterized by a road width to building height ratio that falls
in the middle of low and high flushing streets, and thus experiences
moderate levels of pollutant dilution into a larger air mass.

3 METHODOLOGY
Two distinct datasets were analyzed. The datasets were intended
to simultaneously capture air quality and information about the
surrounding urban area and street flushing types. The first dataset
consists of PM2.5 data collected from July 1, 2021 through June 30,
2022 from 106 nodes of the Eclipse sensor network deployed in
Chicago, Illinois [3]. The PM2.5 data were combined with estimated
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road width data based on Google Street View images and building
height information from OSM Buildings [10]. The second dataset
contains PM2.5 readings from twoDylos DC1700monitors that were
held at different nearby locations around Boston, Massachusetts
across several weeks of field experiments. The PM2.5 data were
combinedwith roadwidth data from theMassachusetts Department
of Transportation [1] and building height information from the City
of Boston [2]. Street flushing types were then calculated based on
the road width to building height ratio, based on mapping values
suggested in prior work [14].

For each pair of sensors that were within 1 km of each other, a
set of PM2.5 readings were correlated with each other and the mean
correlation values were then correlated with features such as the
distance between sensors and the street flushing types. Correlations
were calculated using both Pearson’s correlation and adjusted R-
squared values. The mean correlation for each set of readings was
then correlatedwith the distance between the sensors and examined
with consideration for street flushing type and the orientation of
the sensor nodes, being either on the same street or around the
corner from each other.

4 RESULTS AND DISCUSSION
Across both datasets, the correlation for sensor pairs on the same
medium flushing street was moderately negative, with correlation
values of −0.45 for the Boston dataset and −0.39 for the Eclipse
dataset. These values match the expected relationship of decreasing
correlation between sensors with an increase in distance. Con-
versely, the results of correlation between sensors on low and high
flushing streets were extremely variable, suggesting that a pattern
may not exist for these types of streets because of the unique hyper-
local trapping of pollutants that can occur on low flushing streets
or the undisturbed wind flow patterns on high flushing streets.

Additionally, the expected relationship was observed only for
sensor pairs within 750 meters of each other on medium flushing
streets, as show in Fig. 1. For sensor pairs further than 750 meters
from each other, the correlation between sensors exhibited more
variable results. This indicates that there if there is a distance thresh-
old at which sensor correlation drops off significantly, it may fall
around 750 meters on medium flushing roads. Collecting additional
data in field experiments where the sensors are between 750 meters
and 1 km away from each other would help to identify where that
threshold is, especially because prior work has suggested using
1 km as a radius for data “representativeness" [12]. Furthermore,
given the variation in results between medium flushing and low
and high flushing streets, there is a strong possibility that the dis-
tance threshold will differ based on the street flushing type, driving
the need for additional data collection to determine the distance
threshold in different urban settings.

5 CONCLUSIONS
This poster presents an in-depth analysis of two distinct datasets
to identify which physical urban features affect the correlation of
PM2.5 readings between two low-cost sensors. By examining urban
features that generalize to all cities, this work explores network
design techniques that move beyond pure distance-based placement.
Furthermore, the work highlights methods by which to identify the

Figure 1: This scatterplot show the mean Pearson’s correla-
tion for a set of near-simultaneous PM2.5 readings versus
the distance between sensors on medium flushing streets
for the Eclipse dataset [3] as red dots and the Boston field
experiments as blue X marks. Only sensor pairs within 750
meters of each other are included in this plot.

density of nodes needed in different neighborhoods using easily
collected urban information.
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