
Poster: Automating Approximations in Batteryless IoT Devices
Abdullah Soomro

Department of Computer Science
LUMS
Pakistan

Naveed Anwar Bhatti
Muhammad Hamad Alizai
Department of Computer Science

LUMS
Pakistan

Abstract
Batteryless IoT devices powered by energy harvesting face opera-
tional challenges due to intermittent power. Traditional checkpoint-
ing, while essential for state preservation, incurs high energy and
time costs. We designed Approxify, an automated framework, that
reduces energy consumption by 40% using intelligent approxima-
tion techniques. It optimizes energy-accuracy trade-offs, ensuring
reliable operation without compromising key functions. Evalua-
tions on three applications show significant reductions in check-
point frequency and energy usage while maintaining acceptable
error margins.

CCS Concepts
• Computer systems organization→ Embedded software; •
Computing methodologies → Information extraction; • The-
ory of computation→ Approximation algorithms analysis.

Keywords
Transiently-Powered EmbeddedDevices (TPES), Approximate Com-
puting, Large Language Models (LLMs)

1 Introduction and Design Goals
Batteryless IoT devices, powered by energy harvesting, introduce
significant challenges for computation and communication, high-
lighting the importance of energy efficiency and continuous op-
eration [4]. Traditional checkpointing methods, while useful for
coping with power interruptions by saving and restoring system
states, impose considerable overheads. Approximate computing
complements checkpointing by balancing computational accuracy
and energy efficiencies [2].

Nonetheless, applying approximation techniques in batteryless
IoT systems is challenging due to several factors. First, complex
manual tuning is required for each application, making the process
time-consuming and prone to inaccuracies. Second, identifying suit-
able approximation opportunities demands a deep understanding
of both the application and techniques to balance energy efficiency
and reliability. Finally, assessing the impact and predicting program
behavior post-deployment is difficult, complicating the scalability
and adaptability of solutions.

We present Approxify, a tool that automates approximation tech-
niques to reduce checkpoint frequency. It is designed with the
following goals to apply approximate computing in batteryless em-
bedded systems effectively: 1○ Generalizes approximation oppor-
tunities across various applications, 2○ Simplifies the developer’s
experience by automating approximation strategies, 3○ Balances
energy efficiency and accuracy with a variety of techniques, and 4○

Figure 1: Approxify architecture.

Adjusts approximation levels during compile time using realistic
energy traces

2 Approxify: System Architecture
Approxify takes six key inputs from the user: original application
source code for identifying approximation opportunities, input trace
to simulate application inputs, error class (𝑒𝑐 ) and error bound (𝑒𝑏 )
for managing the trade-off between accuracy and energy efficiency,
platform architecture (e.g., ARM Cortex M or MSP430) for energy
consumption estimation, and capacitor size to calculate the mini-
mum energy required to avoid non-progressive states. These inputs
enable Approxify to balance accuracy and energy efficiency in
batteryless IoT devices, as shown in Figure 1. Approxify’s core com-
ponents work together to automate and optimize approximations:
Code Parser: The Code Parser identifies key code blocks—such
as variables, functions, and loops—required for approximation. It
systematically applies approximation techniques, ensuring all po-
tential areas for optimization are considered.
Output Validator: The Output Validator evaluates the perfor-
mance of approximations using a simulator and error analyzer.
The simulator determines checkpoint frequency and energy usage,
while the error analyzer measures the accuracy deviation, ensuring
the selected approximations meet energy and accuracy require-
ments.
ApproxSafe Mapper: The ApproxSafe Mapper identifies code
blocks safe for approximation by evaluating their impact on per-
formance and accuracy. It filters out blocks that don’t improve



Soomro et al.

(a) SUSAN - 220𝜇𝐹 (b) LQI - 220𝜇𝐹 (c) String Search - 47𝜇𝐹

Figure 2: Performance index vs. approximation percentage
for three applications with smallest capacitors.

efficiency or exceed the error threshold, focusing only on blocks
that enhance overall system performance.
Approximator: The Approximator fine-tunes safe approximations,
adjusting intensity levels iteratively to balance energy savings and
accuracy. It ensures that approximation-induced errors stay within
acceptable limits while maximizing checkpoint reductions.

3 Implementation
Approxify leverages LLVM [3] for code parsing and compiler passes,
paired with a Python framework for simulating applications. This
combination allows efficient source code modifications and ac-
curate approximation evaluations. LLVM’s abstract syntax tree
(AST) is used to identify essential code blocks, isolating those suit-
able for approximation. Compiler passes modify the source code,
and only blocks that improve the checkpoint reduction ratio (𝑐) or
meet the error threshold (𝑒𝑏 ) are selected for further processing.
Using Renode [6] and MSPSim [1], Approxify simulates approxi-
mated code across various architectures, ensuring generalizability
for batteryless IoT platforms. The checkpointing simulator, based
on MementOS [5], mimics energy consumption using user-supplied
voltage traces and capacitor sizes, predicting necessary checkpoints.
Approxify ’s optimization is agnostic to the checkpointing system,
aiming to reduce computational cycles and enhance energy effi-
ciency across any system.

4 Preliminary Results & Next Steps
SimulationResults:WeevaluatedApproxify’s performance across
three applications—SUSAN, Link Quality Indicator (LQI), and String
Search—on four different capacitor sizes as input to the system.
However, due to space constraints, we report the results for the
smallest capacitors. The evaluations were conducted using the
STM32 L152RE board with a maximum error bound of 35%.

For SUSAN, a widely used algorithm in IoT for edge detection,
Approxify reduced checkpoint frequency by 40% with a 220𝜇F ca-
pacitor while maintaining a 28% error margin using the Structural
Similarity Index (SSIM). Similarly, the LQI, crucial for wireless com-
munication reliability, showed a 33% checkpoint reduction with a
220𝜇F capacitor, maintaining an error within 28%. Lastly, the String
Search, evaluated with a 47𝜇F capacitor, demonstrated a 20% re-
duction in checkpoints while keeping the error within acceptable
limits based on the F1 score. These results highlight Approxify’s
ability to optimize energy efficiency while controlling accuracy
across different IoT applications.

Figure 3: Testbed / Schematic for checkpointing validation.

Table 1: Number of checkpoints on multiple energy traces
for SUSAN, LQI, and String Search applications. Each cell
contains three values: the number of checkpoints on the
testbed (black), predicted by Approxify’s simulator (cyan),
and the original without approximations (red).

Traces SUSAN LQI String Search
220µF 330µF 220µF 330µF 47µF 68µF

RF#1 6/6/10 2/2/3 7/7/10 3/3/4 8/8/10 2/2/4
RF#2 6/6/10 2/2/3 7/7/10 3/3/4 8/8/10 2/2/4
RF#3 6/6/10 2/2/3 7/7/10 3/3/4 9/9/11 2/2/4
RF#4 6/6/10 2/2/3 7/7/10 3/3/4 8/8/10 2/2/4
RF#5 6/6/10 2/2/3 7/7/10 3/3/4 8/8/10 2/2/4

Testbed Validation: To verify Approxify’s performance, we de-
ployed a testbed that replicates real-world energy harvesting sce-
narios, ensuring accuracy and repeatability in diverse energy envi-
ronments. The testbed consists of an ESP32 microcontroller, which
controls the energy supply to STM32 L152RE board as shown in
Figure 3. Energy flow is managed by a relay controlled by the ESP32,
which connects the STM32 board to a capacitor, closely simulating
real-world capacitor charge and discharge cycles.

We used five distinct RF energy traces fromMementOS [5]. These
traces were replayed on the testbed, with the ESP32 monitoring
capacitor voltage at 1 ms intervals to manage the relay and charge-
discharge phases, while the STM32 board dynamically triggered
checkpoints via MementOS. The summary of the results of five
energy traces is available in Table 1.
What’s Next?We are exploring the use of Large Language Mod-
els (LLMs) to achieve fine-tuning that approaches human-level
precision in approximation. In the future, Approxify will include
adaptive decision policies for real-time energy trends.

References
[1] J. Eriksson and et al. Poster abstract: Mspsim–an extensible simulator for msp430-

equipped sensor boards. 01 2007.
[2] K. Javed and et al. Moptic-sm: Sleep mode-enabled multi-optimized intermittent

computing for transiently powered systems. Journal of Systems Architecture,
137:102850, 2023.

[3] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, 2004.

[4] B. Lucia and et al. Intermittent computing: Challenges and opportunities. SNAPL
2017, 2017.

[5] B. Ransford and et al. Mementos: system support for long-running computation
on rfid-scale devices. In ASPLOS, page 159–170, 2011.

[6] Renode. Simulation framework for complex embedded systems.


	Abstract
	1 Introduction and Design Goals
	2 Approxify: System Architecture
	3 Implementation
	4 Preliminary Results & Next Steps
	References

