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Abstract
Billions of resource-constrained systems, such as embedded devices
and cyber-physical systems, are in operation worldwide. These
systems process input data (e.g., sensor data) into control signals
for actuators or human-readable information, thereby providing
valuable services and insights. Modern software methods, such as
machine learning, have the potential to enhance the performance
of these systems even further. However, machine learning is often
associated with excessive energy demand, which urgently needs
to be resolved. To address this issue, we present GreenPipe, an
approach that creates energy-efficient data-processing pipelines
tailored for embedded systems known for their low power demand.
GreenPipe combines traditional AutoML techniques with energy
models and thereby enables the selection of energy-efficient and
accurate data-processing pipelines. We implemented GreenPipe
on an ARM Cortex-M4 platform and evaluated its performance
and energy efficiency. We demonstrate GreenPipe’s capabilities
through a comprehensive evaluation, including a practical real-
world application for predicting machinery-bearing faults. Green-
Pipe demonstrates that it can reduce the energy footprint by up to
90 % while maintaining high accuracy.

CCS Concepts
• Hardware → Power estimation and optimization; • Com-
puter systems organization→ Embedded systems.

Keywords
energy efficiency, automated machine learning, embedded systems

1 Introduction
The broad deployment of resource-constrained systems is rapidly
gaining momentum. This growth is driven by the widespread ad-
option of embedded and cyber-physical systems across various
application domains, such as production facilities and Industry 4.0
applications [22], smart home automation [34], and wearable sys-
tems [8]. A pivotal reason contributing to this momentum is the cap-
ability to integrate machine learning within resource-constrained
systems. In particular, this capability provides embedded systems
with a previously unattainable degree of independence from cloud
systems: local data processing and storage that is now possible
opens the way to application domains that would otherwise have
been unfeasible to realise [1, 24].
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Figure 1: GreenPipe reduces the energy demand of auto-
matically generated data-processing pipelines by up to 90%
(49.9µJ vs. 929.3µJ) with almost identical accuracy.

The utilisation of machine learning has significant implications
for the energy demand, though. This is particularly critical as many
embedded systems [14] need to be energy-efficient due to battery
operation or intermittent power supply. Consequently, embedded
applications must be designed from the ground up to manage re-
sources, particularly energy, efficiently. While numerous tools and
expert knowledge are available for developing such systems with
traditional software methods, such tools are often lacking for em-
ploying machine learning in embedded systems. Therefore, to fully
benefit from machine learning in these contexts, new energy-aware
tools are necessary.

An established method for developing a machine learning (ML)
application is the design of a data-processing pipeline compris-
ing several small, simple processing steps. These steps are care-
fully selected and arranged so that the pipeline, as a whole, imple-
ments a complex application. Hence, the capabilities and quality
of a pipeline are determined by its overall composition. What con-
stitutes a good composition, including the number and types of
steps involved, depends on the specific use case. A well-designed
pipeline for object classification in images differs significantly from
a pipeline that is optimised for Industry 4.0 applications. Con-
sequently, constructing an effective pipeline for a particular use
case requires a lot of expert knowledge and significant development
time. Automated pipeline generation is an alternative to the manual
construction of these pipelines by experts. The pipelines can be
generated much quicker and with fewer developers compared to the
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manual construction of pipelines. This leads to considerable advant-
ages in cost efficiency for application development. The automated
generation of such pipelines is referred to as automated machine
learning (AutoML) and is well-researched [7,11,21]. However, exist-
ing AutoML approaches assume systems with unrestricted power
supply and do not consider or optimise for energy demand.

In this paper, we propose GreenPipe, an approach for the auto-
matic generation of energy-efficient data-processing pipelines for
resource-constrained systems. Figure 1 illustrates the functional
performance (i.e., the ML system’s accuracy) and the energy de-
mand of two pipelines, implemented with and without GreenPipe.
Both pipelines show nearly identical accuracy (95.8 % vs. 96.0 %), yet
their energy consumption differs significantly. The legacy pipeline
requires 929.3 µJ, whereas the pipeline developed with GreenPipe
requires only 49.9 µJ. In both cases, the measurements solely in-
clude the energy consumption for executing the pipelines once.
This means that, for example, the energy for generating the input
data (e.g., reading hardware sensors) is not included. Traditional
AutoML approaches focus solely on the functional quality of a
pipeline. When a pipeline contains steps that neither positively nor
negatively impact its performance, these steps are simply ignored
when evaluating the pipeline’s quality and thus potentially remain
part of the pipeline. Although irrelevant to the functional prop-
erties, these steps still contribute to the pipeline’s overall energy
consumption. By contrast, GreenPipe not only considers the func-
tional quality of the pipeline, but also its energy consumption. As a
result, steps that do not contribute to the functional capabilities or
steps with unnecessary complexity are eliminated from the pipeline.
In the example above, the legacy AutoML approach generates a
pipeline that consists of 16 steps that also include relatively com-
plex steps with regards to the energy consumption. In contrast, the
pipeline developed with GreenPipe consists of only 8 steps and in
average less complex steps, which is the reason for the lower energy
consumption. Thus, GreenPipe reduces the energy footprint for
the data processing in this example by over 90 % while maintaining
identical functionality. The key component of GreenPipe is the
extension of existing AutoML approaches with an energy model
to guide the automatic generation of energy-efficient pipelines. In
particular, this paper makes the following contributions:

• The concept and design of GreenPipe, an approach that
creates energy-efficient data-processing pipelines tailored
for embedded systems.

• An implementation of GreenPipe exploring two energy
models with different flexibility and portability trade-offs.

• An in-depth analysis of GreenPipe based on energy meas-
urements, as well as an evaluation of generated pipelines
and a real-world application.

The rest of this paper is structured as follows. In Section 2, the
concept and design of GreenPipe are outlined. Section 3 presents
background knowledge and related work. Details about the energy
models are presented in Section 4 and Section 5. Section 6 describes
our implementation and Section 7 introduces our measurement
setup and presents an analysis of several components of GreenPipe.
Finally, Section 8 evaluates GreenPipe’s capability to create energy-
efficient pipelines in microbenchmarks and real-world application
code and Section 9 concludes this paper.

2 Concept and Design of GreenPipe
This section presents GreenPipe’s concept and design for automat-
ically creating energy-efficient data-processing pipelines. Figure 2a
illustrates how an end user utilises GreenPipe. The user defines
the (1) pipeline input(s) and output(s), and (2) a sample data set.
GreenPipe’s objective is then to find an energy-efficient pipeline
that maps the pipeline input to the outputs according to the sample
data set. The pipeline composition, that is, the number of steps,
which steps, and the order of steps, is the vital criterion for both the
effectiveness and efficiency of such a pipeline. We use automated
machine learning (AutoML; cf. Section 3.1) as a basis to generate
pipelines. AutoML is capable of automatically creating effective
but not necessarily (energy-)efficient pipelines. In GreenPipe, we
therefore complement traditional AutoML with an energy model
to select effective and energy-efficient pipelines. GreenPipe is ex-
ecuted only on the development system (i.e., a desktop system). Due
to the energy model, an execution of pipelines on the actual target
hardware (i.e., the embedded system) during the development is
not necessary. Only the final pipeline, that is, the result of Green-
Pipe, is installed on the embedded system for production. The full
hardware capabilities of desktop systems make the application of
GreenPipe convenient for developers and enable fast development
cycles.

We measure the effectiveness of a pipeline by its accuracy and
its efficiency by its energy demand. Optimising both accuracy and
energy demand, instead of only accuracy, requires strategies to bal-
ance these properties. The appropriate strategy depends on the use
case and there is no one-size-fits-all solution. Therefore, GreenPipe
implements the following three strategies:
Energy Budget Considering only pipelines within a given energy
budget and maximising accuracy within this budget.
Worst-CaseAccuracyConsidering only pipelineswith aminimum
accuracy and minimising energy demand for this accuracy.
Energy EfficiencyMaximising a combined accuracy and energy-
demand metric such as the energy-accuracy product (analogous to
the commonly used energy-delay product [9]).

These automatic strategies cover the majority of use cases. How-
ever,GreenPipe also supports amanual, tailor-made selection based
on the Pareto front of energy demand and accuracy (as demon-
strated for a real-world application in Section 8.3).

Knowledge about the energy demand is a precondition for cre-
ating energy-efficient pipelines. However, energy measurements
during day-to-day application development are often not feasible
due to the unavailability of measurement equipment for developers
and the excessive time and effort involved. Therefore, a key com-
ponent of GreenPipe is the energy model that reliably predicts the
energy demand of data-processing pipelines. An energy model has
the advantage that it enables strategies such as the Energy Budget
strategie described above. Understanding the energy budget is par-
ticularly valuable during the application design phase in embedded
systems. Especially, when battery capacity or lifetime requirements
are constraining the budget. Simpler approaches that only sort the
pipelines by their energy efficiency, without predicting the absolute
energy consumption, would prevent such strategies. We decided
to implement and analyse the energy model based on two model
inputs: (1) a source-code–based input (cf. Section 4) and (2) an
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Figure 2: The application and implementation of GreenPipe. For its application, an end user defines the pipeline’s input and
output and provides a sample data set. GreenPipe, then, generates different pipelines and evaluates their energy efficiency.
Eventually, the most energy-efficient pipeline is returned. For implementing GreenPipe, the key component is the creation of
an energy model capable of predicting the energy demand of pipelines.

assembler-based input (cf. Section 5). Both model inputs are inde-
pendent of the pipeline input (e.g., the sensor data in Figure 3).1 Not
considering the pipeline inputs makesGreenPipe applicable during
development, which we consider more important than being able to
capture data dependencies of the pipeline inputs. In the remainder
of this paper, the model input based on source code will be referred
to as the source code representation, and the model input based on
assembler code will be referred to as the assembler representation.
Accordingly, the energy model based on the source-code represent-
ation is called the source-code (SC)model and the model based on
the assembler representation is called the assembler (AS) model.
These representations are described in more detail in Section 4 and
Section 5, respectively.

The implementation of GreenPipe is designed to be portable
and extensible: (1) GreenPipe can support new hardware with a
minimal set of energy measurements. (2)GreenPipe easily supports
new pipeline steps, ideallywithout additional energymeasurements.
The rest of this section describes the implementation of GreenPipe
(illustrated in Figure 2b) and the design choices made to achieve
GreenPipe’s portability and extensibility.

Phase I: Training-DataGeneration. The first phase consists of
a pseudo-random generator that generates pipeline steps that serve
as training data for the creation of the energy model. In total, we
implemented support for 27 different pipeline steps. Additionally,
the steps are configurable (e.g., the size of the input window). We
denote a step and its specific configuration as a step variation. The
number of potential step variations quickly becomes vast due to the
combinatorial explosion of steps and configurations. Our analysis
in Section 7.2 shows that not all variations are necessary and not
even all steps are required in the training data. Instead, a relatively
small subset of steps is sufficient for a precise energy model.

Phase II: Energy-Model Preparations. In Phase II, the steps
generated in Phase I are complemented with energy measurements
and an analysis. The energy measurements from the measurement

1It is important to distinguish between the input data for the pipeline and for the
energy model. The input for the pipeline is, for example, the data of a sensor as shown
in Figure 3 (denoted as pipeline input). The input to the energy model is a description
of the pipeline to determine its energy demand (denoted as [energy] model inputs).

campaign are used as labels (i.e., the expected output) for the energy-
model training. The analysis determines representations of the
pipelines’ computational demand, which are used as features (i.e.,
the input to the energy model). To collect the energy data, we ex-
ecute each step on the target hardware (i.e., the embedded system)
and measure its energy demand. It is important to note that the
energy measurements only need to be taken during the implement-
ation of GreenPipe. OnceGreenPipe is implemented and end users
apply GreenPipe, the energy model substitutes the measurements
and the target hardware is only required for installing the final
pipeline for production. The computational demands of the steps
are determined independently of the energy measurements. As
mentioned above, we explore two different representations. Both
representations do not rely on pipeline inputs.

Phase III: Energy-Model Training. After Phase II, all the ne-
cessary information is available to create the energy model. This
includes the inputs to the energy model (i.e., representations) and
labels for the training process (i.e., energy measurements). As we
explore two representations, we execute the training, relying on
supervised learning, for each representation. Section 8 analyses
the representations’ properties in detail. After training, the energy
model is capable of predicting the energy demand of any pipeline
step and, therefore, entire pipelines.

System Model
GreenPipe is designed for embedded systems and systems with
constrained resources (e.g., low-power CPUs). In particular, we
implemented GreenPipe for the nRF52840 system-on-chip (SoC)
running an ARMCortex-M4 CPU. However, portability to hardware
with the same instruction set architecture (ISA) (e.g., different SoCs
and boards) or similar hardware platforms with a different ISA (e.g.,
ARM Cortex-M0+) is within the scope of GreenPipe.

Currently, GreenPipe does not support machine-learning accel-
erators for embedded devices (e.g., Google Coral Edge TPU [6]).
However, for future work, we plan to extend GreenPipe to also
support acceleration hardware. Related work has shown that small
accelerators can execute machine-learning workloads very effi-
ciently under the right circumstances [12], so we see potential for
GreenPipe here. We consider powerful SoCs and CPUs backed by



Benedict Herzog, Jakob Schubert, Tim Rheinfels, Christian Nickel, and Timo Hönig

GPUs (e.g., high-end smartphones, desktop and server CPUs) out
of scope for GreenPipe. The complexity and imposed constraints
of such hardware are difficult to accommodate in (a) the energy
model and (b) the automatic composition of pipelines and require
different approaches.

Portability and Extensibility
Besides the functional capability of generating energy-efficient
pipelines, portability and extensibility are key non-functional prop-
erties of GreenPipe. Portability denotes the support for new hard-
ware (platforms), while extensibility refers to the support for new
pipeline steps. The critical factor for both properties is the neces-
sary effort to support a new hardware platform or step, respectively.
To this end, we propose three ways to organise the energy model:
Global Energy Model: All steps in one combined training set;
the model predicts the energy demand for all steps.
Single-Step EnergyModel: One training set per step; training sev-
eral sub-models, where one sub-model predicts the energy demand
for exactly one step.
Hybrid Energy Model: A combination of both; a global energy
model as default and single-step sub-models for steps where the
accuracy of the global model is not sufficient. Suitable candidates
for sub-models are steps with high code complexity or already
known high error (cf. Section 8.1).

Using the global model, new steps can be supported out-of-the-
box, as long as the corresponding representation is available. In
particular, no additional energy measurements are required. This
also applies to the hybrid model as long as the accuracy of the global
model is sufficient for the new steps. The single-step sub-models re-
quire one training set per step. Therefore, additional measurements
are necessary for new steps.

Supporting new hardware (platforms) requires additional energy
measurements in all cases. However, as our analysis in Section 7.2
shows, energy measurements for a subset of steps already suffice for
well-performing global energy models. This drastically reduces the
effort needed to support new hardware (platforms). For single-step
sub-models, new measurements for all steps are required. Our eval-
uation in Section 8 shows that the global energy model is already
accurate enough for the intended use case of GreenPipe. However,
if more accurate energy predictions are necessary, the evaluation
shows that accuracy can be significantly increased using a single-
step sub-model. Hence, GreenPipe is capable of supporting new
hardware platforms by means of a global or hybrid model with
minimal effort. Therefore, it fulfils its non-functional requirements
regarding both portability and extensibility.

3 Background and Related Work
In this section, we discuss the necessary background knowledge and
related work for understanding automated machine learning and
energy-demand predictions. Additionally, we outline the implicit
path enumeration technique (IPET), which is used to implement one
representation.

3.1 Automated Machine Learning (AutoML)
Machine learning (ML) has pervaded many application domains [8,
22, 34]. However, the development of ML applications often re-
quires detailed ML knowledge and demands corresponding experts.

. . . . . .

Sensor
(Raw Data)

Pre-Processing Steps Machine-Learning Steps Result

AutoML Pipeline

Figure 3: Exemplary AutoML pipeline consisting of several
pre-processing and machine-learning steps.

Automated machine learning (AutoML) is one approach to mitig-
ate these requirements and enables non-experts to develop ML
applications [7, 11, 21]. AutoML arranges small ML steps into a
machine-learning pipeline. Figure 3 exemplifies such a pipeline.

These steps can be divided into two phases: pre-processing and
the actual ML steps. During the pre-processing phase, data-type
conversion, data omission, and feature extraction take place. The
goal is to get the input data into an easy-to-use form for the actual
ML steps. The ML steps themselves can consist of any type of
machine-learning algorithm. Although machine learning is often
associated (or even equalised) with the use of neural networks [21,
40], this is not a must [35]. GreenPipe considers embedded devices
(e.g., small ARM and RISC-V SoCs) whose processing capabilities
and latency requirements typically severely limit, restrict, or even
preclude the use of neural networks. For this class of devices, it is
beneficial to replace complex ML methods (e.g., neural networks)
with simpler ML methods, for example, statistical metrics (e.g.,
standard deviation, interquartile range) and simple regressors (e.g.,
ridge regression, random forest), which have a low resource demand.
In proper combination, these simpler steps implement complex
applications with drastically reduced system requirements [35].
Additionally, ML methods often provide very predictable latency
behaviour during execution [12, 40], which, in turn, yields very
predictable execution times for ML pipelines. As these embedded
systems often require real-time properties, this is a very useful
characteristic.

Composing an appropriate pipeline is usually a task for an ex-
perienced ML developer. AutoML automates this process and en-
ables non-experts to leverage ML capabilities. Typically, AutoML
starts with an initial composition, which is then iteratively changed
together with the pipeline configuration, thereby improving the
pipeline’s accuracy. After a predefined termination condition is
met (e.g., number of iterations, minimum accuracy), AutoML re-
turns the pipeline with the highest accuracy as a result. Using this
procedure, it has been shown [11] that AutoML is capable of imple-
menting complex applications. However, we observe that not only
the accuracy varies but also the energy demand of individual steps.
GreenPipe exploits this property to drastically reduce the energy
footprint of pipelines, as demonstrated in our evaluation (cf. Sec-
tion 8). Zhao et al. [40] also consider the power demand in their
AutoML implementation of neural networks on edge devices. Their
application scenario, however, consists of GPU-backed systems,
which provide a different class of processing capabilities. Further-
more, they utilise only a coarse-grained energy model based on
GPU frequency not backed by measurements.
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3.2 Energy-Demand Prediction
The resource demands of machine-learning applications are a major
concern in data centres. Consequently, numerous works examine
the respective resource demands (e.g., latency, memory consump-
tion) [19, 37]. Advances in training, inference, and the respective
hardware have enabled ML for mobile and embedded devices [1,36].
As the resource demand for these devices is inherently critical due to
limited computational and power resources, related work has invest-
igated the impact of ML onmobile and embedded devices [12,17,23].

For the implementation of energy-efficient pipelines, however,
not only an analysis of specific pipelines but knowledge about arbit-
rary pipelines is necessary. The use of energy models is a suitable
method to analyse the energy efficiency of pipelines. Energy mod-
els, which predict the energy demand, have been applied in several
related works for all hardware classes (e.g., data centres, HPC, and
embedded devices [12, 13, 28]). The granularity varies from system
models with limited accuracy but great generalisation [5] to very
specialised instruction models [13, 28] with high accuracy.

In comparison to energy models, energy measurements usually
provide more accurate results. However, in this context, energy
measurements are unsuitable for several reasons: the hardware
platform must be at hand, the developer must have access to and
be capable of operating the measuring equipment, and the meas-
urements are time-consuming and error-prone. In summary, meas-
urements significantly slow down the application development and
thus are unfavourable. To keep energy measurements to an absolute
minimum, GreenPipe is designed to fully exploit energy models,
which are trained using only a small initial measurement campaign.

To our knowledge, GreenPipe is the first work that combines
energy models and AutoML to automatically create energy-efficient
pipelines for embedded devices. For its energy model, GreenPipe
partly uses the implicit path enumeration technique (IPET), which
is briefly presented in the following section.

3.3 Implicit Path Enumeration Technique (IPET)
GreenPipe’s assembler energy model (cf. Section 5) uses the impli-
cit control flow to predict the energy demand. The implicit control
flow of software describes which instruction sequences are ex-
ecuted and how often. In contrast, the explicit control flow also
contains the order in which the sequences are executed, which is
not necessary in our case. The implicit path enumeration technique
(IPET) is often used to determine the worst-case (or best-case) exe-
cution time by reformulating the implicit flow as an integer linear
program [20]. Similarly, it can be used to predict the worst-case
energy demand [38]. The resulting instruction sequences are used
to predict the energy demand of a pipeline, as described in detail in
Section 5. It is important to note that although IPET is often used
in best-/worst-case analyses, we aim for good prediction results in
the average case.

4 Source-Code Representation
A key aspect of GreenPipe is the performance and accuracy of the
energy model. The energy model relies heavily on the provided
input data. Ideally, the input data precisely resembles the computa-
tional demand of the pipeline under test. In this paper, we examine
two different representations to describe the computational demand

Table 1: Operations of the SC representation.

Operation Description

add{_i,_f} Number of additions and subtractions
mul{_i,_f} Number of multiplications
div{_i,_f} Number of divisions
comp{_i,_f} Number of comparisons

sqrt Number of calls to the squared-root function
exp Number of calls to the exponential function
log Number of calls to the logarithmic function
load Number of memory loads
store Number of memory stores

of a pipeline: on the one hand, a representation based on assembler
(AS) code outlined in Section 5 and on the other hand, a source-code
(SC) representation explained in this section.

The basis for the SC representation is the source code of a
pipeline step (e.g., in C/C++ or Python). Implementation-independent
approaches, such as those proposed by Jensen et al. [16] or based
on the big-O complexity, solely rely on the number of mathematical
operations. An implementation-independent description for the
arithmetic mean, for example, consists of:

n-1 additions 1 division

where 𝑛 is the number of elements. However, we find that such
implementation-independent approaches are too coarse-grained
for accurate energy predictions. Early tests showed that such ap-
proaches were not sufficient to correctly sort the pipelines by their
enery demand. In particular, the tests showed that the energy con-
sumption for steps with the same number of mathematical opera-
tions differed by a factor ofmore than four. In contrast, also consider-
ing the implementation allows for the inclusion of implementation-
dependent factors (e.g., loop overhead, integer versus floating-point
data types, memory accesses). Of course, using only the implement-
ation but not the compiled binary introduces some imprecision.
This is due to the missing knowledge about compiler optimisations,
hardware caches, and actual memory accesses. The advantage of
this approach, however, is that the representation remains hardware
and platform-independent and thus can be reused.

In summary, we track 13 different operations to describe the
computational demand. Table 1 shows an overview and a short de-
scription of all operations. Additions and subtractions are tracked
together as they are usually the same operation in hardware. Where
applicable, we differentiate between integer (“_i” suffix) and floating-
point operations (“_f” suffix). In addition to the 13 operations, the
input to the energy model is complemented by one derived value,
which is the sum of all operations. For the arithmetic mean im-
plementation, the SC representation is as follows (omitting zero
values)2:

n-1 add_i n-1 comp_i 1 mul_f
n-1 add_f n load 4n-2 ops

2In this case, the final division can be mapped to a multiplication, because our imple-
mentation always uses input sizes that are a power of 2. In the general case, the mul_f
would be a div_f.



Benedict Herzog, Jakob Schubert, Tim Rheinfels, Christian Nickel, and Timo Hönig

This representation allows a much more fine-grained and pre-
cise energy-demand description compared to the implementation-
independent approach described above.

Currently, the description for a new step is created manually.
However, the creation process can be augmented by tool support
(e.g., static analysis). Consequently, only modest technical know-
ledge is needed, as no deep understanding of the algorithm is re-
quired to count the respective operations. In particular, it is not
necessary to have a deep machine-learning background, which
may be required to develop new steps. This allows for the straight-
forward inclusion of new steps (developed by ML experts) into
GreenPipe with little effort by non-experts.

One challenge is determining loop bounds, which is often diffi-
cult in the general case. In AutoML, however, almost all steps work
on an input window (e.g., raw sensor data). As the window size
is configured by GreenPipe, this value is known and directly or
indirectly determines the upper loop bounds. Thus, determining
loop bounds is often straightforward in this domain. Once created,
the description can be utilised for all hardware (platforms) as it is
completely hardware-independent.

5 Assembler Representation
In addition to the source-code (SC) representation presented in
the previous section, we examine an assembler-based (AS) rep-
resentation in this section. As the assembler code usually has a
one-to-one mapping to hardware instructions, it closely resembles
the operations executed in hardware. In particular, relying on the
assembler code eliminates some imprecision of the higher-level SC
representation (e.g., compiler optimisations). The trade-off, how-
ever, is that the AS representation is not directly transferable to
other hardware. This disadvantage is mostly mitigated by the fact
that both the compilation process and the assembler analysis to
generate the representation are fully automated. This means that as
long as a working toolchain to compile code for the other hardware
is available, the AS representation can be generated automatically.

With the assembler code at hand, the total number of executed
instructions for all instruction types (e.g., ADD, LDR) can be determ-
ined. Combined with an instruction-based energy model, which
tracks the energy demand for executing specific instructions, the
total energy demand for executing a pipeline step can be calculated.
Creating an instruction-based energy model, however, requires
significant training data to accurately determine the energy de-
mand for each instruction type. Using only the total number of
executed instructions is insufficient, as the energy demand may
vary significantly between instruction types [13].

Therefore, we group instructions into groups with similar com-
plexity to limit the amount of training data while retaining all in-
formation necessary for precise energy estimations. We determine
the complexity of an instruction based on three factors: (1) active
CPU components (e.g., ALU, FPU, DSP) (2) number of CPU cycles
(3) memory accesses. If necessary, additional instruction groups can
be specified based on the specific hardware platform’s properties.
In particular, we implemented our approach for the ARMv7E-M
instruction set architecture (ISA). Table 2 shows an overview of
the 12 different groups that we identified for the ARMv7E-M ISA.
The B and LDR(PC) instructions are handled in separate groups as

Table 2: Instruction groups for the ARMv7E-M ISA.

CPU Component Cycles Mem. Example

CPU

1 ✗ ADD
2 ✗ MLA
1+x ✗ B
2 ✓ LDR
2+x ✓ LDR(PC)
2 to 12 ✗ SDIV

FPU

1 ✗ VADD.F32
2 ✓ VLDR.F32
3 ✗ VMLA.F32
3 ✓ VLDR.64
14 ✗ VDIV.F32

DSP — — SMMLA

the modification of the program counter (PC) induces additional
pipeline stalls. Similarly, SDIV has a separate group as the execution
time may vary between 2 and 12 cycles. In addition to the respective
number of executed instructions for the 12 groups, the total number
of instructions is added.

This approach allows for a good trade-off between detailed in-
formation and reasonable input size. Grouping instructions into
instruction groups, however, requires a correct mapping for all
possible instructions, including all instruction variations (e.g., ad-
dressing modes). Furthermore, the ARMv7E-M ISA allows the spe-
cialisation of instructions by means of suffixes, resulting in an
enormous space of possible instruction variations. Instead of cre-
ating and maintaining a full table with mappings for all possible
instruction variations, we rely on the Levenshtein distance [18]
between the mnemonic of an actual instruction and its correspond-
ing base instruction (i.e., without addressing mode and specialisa-
tion). The Levenshtein distance considers all modifications (i.e.,
deleting, adding, replacing) to transform one sequence of charac-
ters into another. Additionally, the modifications can be weighted
(e.g., a deletion is more expensive than an addition). As the assem-
bler suffixes mainly add new characters, we assume the costs for
replacing and adding to be ten times the costs for deleting charac-
ters. Although only approximate, this approach maps almost all
instructions into the correct assembler group. Additionally, as this
approach is independent of the hardware platform, it mitigates
most of the efforts required to support a new ISA.

To determine which instructions are executed and how often,
we rely on the implicit path enumeration technique (IPET). The
basic principle of the IPET is summarised in Section 3.3. We chose
to maximise our target function, which may lead to a tendency for
overprediction of the energy demand. Similar to the SC representa-
tion, the (upper) loop bound must be provided for the IPET. Because
individual steps in pipelines usually have either a fixed number of
iterations or work on fixed window sizes (known at compile time),
this requires only minimal effort.
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6 Energy-Model Implementation
This section describes the implementation of the energy model
based on the source-code (cf. Section 4) or assembler representation
(cf. Section 5). Section 6.1 summarises the supported steps and
Section 6.2 describes the implementation of the energy model.

6.1 GreenPipe Steps
Typically, an AutoML pipeline consists of many different steps.
In total, we added support for 27 different steps to GreenPipe.
Examples of steps include the calculation of absolute values, the
arithmetic mean, the zero-crossing rate, and the root variance fre-
quency [39]. The AutoML and the steps are implemented in Py-
thon. In particular, we use implementations from NumPy [10] and
SciPy [33] for the steps. The AutoML approach and pipeline train-
ing are implemented using the Scikit-learn framework [26]. The
execution of Python on embedded devices is either impossible or
at least undesirable due to the energy and execution overhead of
Python. Therefore, the trained pipelines are transpiled from Py-
thon to C code. For compiling C code, we utilise the ARM GNU
Embedded Toolchain (gcc-arm-none-eabi-9-2019-q4-major)3.
Thus, we can use the extensive ML toolset provided by the Py-
thon ecosystem without suffering the respective overheads during
execution on the embedded devices.

6.2 Energy-Model Training
The prediction quality of the energy model plays a key role in
our GreenPipe approach. For the training process, we test and
evaluate three different regressors: decision trees, random-forest
regressors, and ridge regressors. We use the Scikit-learn framework
for the regressor implementations [26]. For all regressors, we use
the random-search strategy [3] to optimise their hyperparameters
and leave-one-group-out for cross-validation.

A prerequisite for successful training is the selection of a suit-
able loss function. We considered three typical loss functions: mean
absolute error (MAE), mean squared error (MSE), and mean abso-
lute percentage error (MAPE). One important selection criterion
for the loss function is that it needs to work well for the complete
range of expected values. For GreenPipe, this relates to pipelines
that have very different energy demands (i.e., very simple or very
complex pipelines). In this case, due to the quadratic nature of the
MSE, pipelines with higher energy demand are considered more
important during training, causing the energy model to inadvert-
ently focus on complex pipelines. Similarly, the relative error of
pipelines with low energy demand is higher, causing the MAPE to
inadvertently focus on simple pipelines. For these reasons, we use
the MAE between predicted and measured energy demand as the
loss function.

6.3 Energy-Model Input
We explored two different inputs (i.e., representations) for the en-
ergy model based on either the assembler code or the source code
of a pipeline. Although both representations are able to capture
the computational demand of a pipeline and consequently lead to
precise energy predictions (cf. Section 8.1 and Section 8.2), they

3Flags: -O2, -fsingle-precision-constant, -mfloat-abi=hard

differ in their applicability. The choice of representation depends on
the user scenario. The SC model operates at a higher level and can
be used in scenarios where a toolchain for the examined hardware
platform is not yet available. However, it requires a manually cre-
ated description based on the source code of a pipeline. In contrast,
the AS model operates on the assembler code and therefore requires
a functioning toolchain but can determine its inputs automatically.

7 Energy-Model Analysis
In this section, the hardware and measurement setup are presented
and in-depth properties of the global energy model are analysed to
answer the following questions: (1) How many steps are necessary
to build a global energy model? (cf. Section 7.2) (2) Which steps
are especially important for training? (cf. Section 7.3) (3) Are the
selected representations suitable for energy predictions? (cf. Sec-
tion 7.4). An evaluation of the prediction quality for individual
steps and whole pipelines for the global and single-step energy
model is presented in Section 8. Furthermore, Section 8 presents an
end-to-end evaluation with a real-world application.

7.1 Hardware and Measurement Environment
We implemented and evaluated GreenPipe on a SparkFun Mi-
croMod ATP carrier board [29] hosting a SparkFun MicroMod
nRF52840 processor board [30], serving as our device under test
(DUT). The board contains aNordic Semiconductor nRF52840 System-
on-Chip [27] with an ARM Cortex-M4 CPU [2]. The Cortex-M4 is a
32-bit CPU running at 64MHzwith an instruction cache but no data
caches. For deterministic energy measurements, we disabled the
instruction cache. Furthermore, it includes a single-precision hard-
ware floating-point unit (FPU). These features, along with the low
cost and wide availability, make the Cortex-M4 a popular candidate
for embedded devices. Due to the carrier board, it is also possible
to reuse the energy measurement setup with other processors.

The energy measurement setup is powered by a source measure
unit (SMU), specifically the National Instruments PXIe-4145 [15],
which also measures the energy consumption of the DUT. The
SMU provides a resolution of 6 µV and 1 nA at 600 kHz. The be-
ginning and end of measurements are indicated by a GPIO pin.
The nRF52840 SoC also includes an internal temperature sensor.
As the SoC’s temperature influences power draw [4], we ensure
a stable temperature between 26 ◦C and 28 ◦C. Temperature read-
ings are only conducted between measurements. New executables
are flashed onto the DUT via a GDB server from the host PC. To
determine the repeatability of our measurements, we measured
10 iterations for each step. The average energy consumption was
22.9 µJ and the average deviation was only 0.013 %. Therefore, we
consider the measurements highly deterministic, which is suppor-
ted by related work on the predictability of ML methods [12].

7.2 Training-Data Size Study
ForGreenPipe, portability (i.e., support of new hardware platforms)
and extensibility (i.e., support of new steps) are major design goals.
In both cases, the limiting factor is the number of necessary energy
measurements. Therefore, this analysis examines how many steps
and energy measurements are required to train a global energy
model capable of predicting the energy demand for arbitrary steps.
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Figure 4: Mean absolute error for energy predictions by the SC and AS model. The x-axis denotes the size of the step subset.
The coloured plots denote the number of variations per step used during training.

For this analysis, we conducted energy measurements for all 27
different steps with 8 to 9 variations per step. Variations of a step
are created by, for example, varying the pipeline-input size (e.g., the
window size of considered sensor readings). In total, we conducted
236 energy measurements.

Subsequently, we tested the prediction quality for a global energy
model trained only with a subset of steps using a ridge regressor.
We test up to a 1000 different subsets and select the model with
the highest accuracy. For testing the prediction quality, all 236
measurements are used. Hence, good prediction quality is a strong
indicator that the energy model is capable of generalising from
the training data and accurately predicting the energy demand of
arbitrary steps. Figure 4 shows on the y-axis themean absolute error
(MAE) for predicting the energy demand using either the source-
code (SC) or assembler (AS) model. The x-axis denotes the subset
size (i.e., number of steps) used during training. The differently
coloured plots denote the number of variations used per step. The
figure shows that even a limited subset of steps is sufficient to create
an accurate energy model irrespective of whether the SC model or
the AS model is used. The specific number of steps beyond which
no further improvement is observed varies slightly between the
models. For the AS model it is 8 steps and for the SC model it is
11 steps. Thus, both models need significantly fewer than 27 steps
although the AS model converges slightly faster. In both cases, it
is helpful to include more than one variation of a step to stabilise
the prediction results. However, we find that only 2 variations are
needed and more variations do not improve the prediction quality.

In conclusion, our analysis shows that it is not necessary to
provide energy measurements for all steps when using GreenPipe.
Even with measurements for 8 to 11 out of 27 steps and 2 variations
per step, an accurate energy model can be trained. This reduces the
necessary measurements by 214 (91%) to 220 (93%) compared to
the full set for the global energy model.

7.3 Training-Data Sensitivity Study
Based on the results of the previous section, Figure 5 provides a
visualisation of which steps contribute most to the training process.
To determine how much a step contributes to the training process,
we analysed different step subsets. First, we fix the subset size (e.g.,
5 different steps). Then, we train energy models for up to 1000
different subsets. From these 1000 trained models, we choose the
model with the highest accuracy (tested with all steps) and visualise
the steps of the chosen subset in Figure 5. Subsequently, we repeat

the process with the subset size incremented by one (e.g., 6 instead
of 5 steps). This was done for subset sizes from 2 to 26. Additionally,
we tested different numbers of variations per step, that is, 1, 2, 5,
and all step variations.

The x-axis in Figure 5 shows the steps (sorted from least fre-
quently to most frequently used) and the y-axis the subset size.
When a step is part of the most accurate pipeline for this sub-
set size, the respective box is coloured. For example, for the SC
model, a subset of 2 steps (see y-axis) and 2 variations per step
(see light-blue boxes) include the Variance (Var) and Shape Factor
(ShapeFac) steps as part of the most accurate pipeline. With this
approach, it is possible to identify the steps that contribute most to
the training and hence should be included in the training data as
a priority. In both energy models, some steps are more frequently
part of the most accurate pipeline. For example, the Energy Rate
(EnRate), Variance (Var), and Max/Abs Scale (MAScale) steps are
used relatively often. These steps tend to be more complex (e.g.,
compared to calculating the absolute value in the abs step). Such
steps are good candidates for a comprehensive yet small training
set. However, there are several examples, where it depends on the
model whether a step is often part of the most accurate pipeline.
For example, the Shape Factor (ShapeFac) and Crest Factor (Crest)
steps are frequently used for the SC model, but almost never for the
AS model. In such cases, our analysis identifies the most beneficial
steps for a compact training set.

7.4 Energy-Model Feature Correlation Study
This section analyses the input features of the energy model. Un-
suitable input features have no positive effect or even impair the
model’s quality. Hence, identifying and removing such inputs can
improve the model quality and reduce the training overhead. One
method to identify such features is the use of correlation coeffi-
cients. Inputs that are not correlated to the output can be removed,
while highly correlated inputs should be retained.

Figure 6 shows the Spearman correlation coefficients for the in-
put features and the energy demand. A value of 1 (or −1) denotes a
perfect positive (or negative) correlation, whereas no correlation is
indicated by a value of 0. In both models, the total number of opera-
tions and instructions, respectively, show a very high correlation of
0.96 and 0.98 (near perfect correlation). This is why we included this
derivative feature in addition to the raw values. Almost all input
features in both cases show at least some correlation to the output.
The correlation strength varies depending on whether an operation
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(b) Assembler Model

Figure 5: Visualisation of the steps comprising the most-accurate pipeline for different subset sizes and variations. The y-axis
shows the subset size (i.e., number of steps) and the x-axis the steps (ordered from least-frequently to most-frequently used).
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Figure 6: Spearman correlation coefficients for the input fea-
tures stemming either from the SC or AS representation.

or instruction is more common in the training set (e.g., AddInt) or
less common (e.g., Sqrt). Some operations and instructions are not
represented in the training data (e.g., the Log operation or instruc-
tions from Group 11). For these categories, no Spearman coefficient
could be calculated (indicated by the ∅ symbol in Figure 6).

As almost all features of both models show at least some correl-
ation and due to the relatively compact feature set (i.e., 14 and 13
features), we decided to retain the inputs as they are. However, if
a more compact feature set is required, this analysis provides the
necessary information to merge features.

8 Evaluation
This section evaluates the ability of GreenPipe to generate energy-
efficient pipelines. Therefore, the section answers the following
questions: (1) What is the prediction quality for predicting the en-
ergy demand of single steps? (Section 8.1) (2) What is the prediction
quality for predicting the energy demand of complete pipelines? (Sec-
tion 8.2) (3) What is GreenPipe’s performance for a real-world
application (i.e., detecting machinery-bearing faults)? (Section 8.3).

8.1 Step Prediction Quality
This section evaluates the prediction quality of the energy models
for single pipeline steps. In total, we evaluate two global models and
one single-step model. As for the in-depth analysis for the global
models in Section 7, all models are based either on the assembler
(AS) or the source-code (SC) representation. Global and single-step
refers to the way the energy model is organised (cf. Section 2). For
GreenPipe, global means that one model is used to predict the
energy demand for all steps. In contrast, single-step means that a
separate sub-model per step is used.

The global models are based on decision trees and random-forest
regressors. For the single-step sub-models, a ridge linear regressor
is trained for each step. Figure 7 shows the mean absolute error
(MAE) of the models in predicting the energy demand. The global
models have an MAE of 0.69 µJ to 0.86 µJ for the source-code (SC)
model and 0.92 µJ to 1.08 µJ for the assembler (AS) model. Both
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Figure 7: Evaluations of different regressors to predict the
energy demand for single steps. We evaluated different re-
gressors for global and single-step energy models.

regressors show relatively similar performance. For most steps, the
AS model has a lower error than the SC model with the exception
of three steps that are mainly responsible for the higher error of
the AS model (see detailed per-step analysis below). For the SC
model, the decision-tree model shows slightly better performance,
while for the ASmodel, the random-forest model performs better. In
summary, we consider decision trees and random-forest regressors
suitable for predicting the energy demand for steps.

However, if energy-demand data for all or at least some critical
steps is available, the sub-models trained for each step separately
can significantly reduce the prediction error. In particular, the single-
step sub-model based on the ridge regressor has an MAE of 0.02 µJ
to 0.24 µJ. Hence, using single-step sub-models can increase the
accuracy at the cost of significantly increased measurement efforts.
The two representations for the computational demand show relat-
ively similar performance. Although the AS representation shows
a slightly higher error, both representations are capable of compre-
hensively describing steps. However, the prediction performance
varies across different steps.

Figure 8 shows the absolute error of the global energy model
based on the random-forest regressor broken down by each step,
individually. The green box plots denote predictions made based on
the SC representation, and the purple box plots represent the AS
representation. The figure demonstrates that the better representa-
tion depends on the step under consideration. In most cases, the
AS representation performs better than the SC representation, with
some noticeable exceptions (i.e., ZCR, ShapeFac, Imp). Refining the
AS representation to better capture these steps is promising for fu-
ture work. However, the better representation ultimately depends
on the use case, whether the manual yet platform-independent
approach (SC) or the automatic approach (AS) is better suited.

8.2 Pipeline Prediction Quality
This section evaluates the prediction quality for complete pipelines.
To this end, we generated and analysed the prediction quality of
1000 randomly generated pipelines. In the next Section 8.3, we
complement this evaluation with the application of GreenPipe on
a real-world scenario.

Table 3: Mean absolute error for predicting the energy de-
mand for complete pipelines.

Repr. Scope MAE Impl.

SC global 4.0 µJ Decision Tree
single step 0.1 µJ Ridge

AS global 2.2 µJ Random Forest
single step 0.9 µJ Ridge

Mean Pipeline Energy Demand: 98.7 µJ

Each of the 1000 pipelines consists of 5 to 15 randomly selec-
ted steps and one pre-processing step. The window sizes for the
pipeline input (e.g., sensor data processed by the pipeline) are al-
ways a power of 2 and range between 32 to 4096. Hence, these
generated pipelines resemble typical pipelines as presented in Fig-
ure 3. Table 3 shows the mean absolute error (MAE) in predicting
the pipelines’ energy demand. For both representations, the MAE is
remarkably low: 4.0 µJ (SC) and 2.2 µJ (AS), especially compared to
the pipelines’ mean energy demand of 98.7 µJ. Again, this error can
be significantly reduced if a single-step sub-model is used. In that
case, the MAE drops to 0.1 µJ (SC) and 0.9 µJ (AS). One interesting
finding is that the prediction errors of the steps do not necessarily
add up but, due to over- and underpredictions, partially cancel each
other out. This explains the still relatively low MAE in predicting
the energy demand of whole pipelines.

8.3 Practical Real-World Evaluation
Last but not least, we present a case study in which we applyGreen-
Pipe to a practical real-world problem (cf. Figure 2a). We use the
Case Western Reserve University (CWRU) data set [25, 31]4. The
purpose of the application is to identify and categorise machinery-
bearing faults by analysing acceleration time-series data collected
from an engine test stand. Therefore, GreenPipe automatically gen-
erates random pipelines utilising traditional AutoML. The pipelines
use the acceleration data as input and produce the fault categorisa-
tion as output. The pipelines are assessed by their accuracy to detect
bearing faults and by their energy consumption. For assessing the
energy consumption, we use the global energy model based on the
AS representation and a ridge regressor.

Figure 9 visualises GreenPipe’s results. The plot displays the
achieved application accuracy (i.e., correct fault classifications)
along the y-axis and the predicted energy demand along the x-axis.
The pipelines constituting the Pareto front (i.e., pipelines with the
best accuracy for a given energy demand) are shown in purple. All
other pipelines are shown as small light-grey dots. In Section 2, we
proposed three different strategies to trade off energy demand and
accuracy. For this scenario, the resulting pipeline for each of these
strategies is as follows:

Energy Budget (50µJ): 〈96 %, 49.9 µJ〉
Worst-Case Accuracy (90%): 〈92 %, 18.8 µJ〉
Energy Efficiency (EAP)5: 〈82 %, 4.7 µJ〉

4Specifically, the data set with 12 kHz sampling rate [32]
5Energy-Accuracy Product (EAP) = (100% − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) ∗ 𝑒𝑛𝑒𝑟𝑔𝑦
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Figure 9: GreenPipe pipelines for the CWRU data set (cut off at 150 µJ). Purple points constitute the Pareto front, red triangles
energy measurements, all other pipelines are shown in small light-grey points.

These results and the Pareto front clearly show that there are
significant differences in energy demand for pipelines with com-
parable accuracy. An accuracy as high as 82 % can be achieved with
only 4.7 µJ. For 92 % accuracy, only 18.8 µJ are required. To exploit
the remaining accuracy headroom of 5 percentage points (i.e., for
the most accurate pipeline with an accuracy of 97 %), an additional
76.1 µJ are needed.

It is important to note that Figure 9 is cut off at 150 µJ for visibility
reasons. However, the energy demand of good pipelines (i.e., >95 %
accuracy) ranges from 42 µJ to 1601.1 µJ. In energy-unaware legacy
scenarios, the pipeline with the highest accuracy would be selected.
By coincidence, in this example, this is a pipeline with relatively
low energy demand (94.9 µJ). In general, however, this could have
been a pipeline with up to 1600 µJ. Using GreenPipe, developers
get explicit control over both the accuracy and the energy demand
of their application.

We also measured all pipelines on the Pareto front using our
energy-measurement setup. The measurements are shown in Fig-
ure 9 as red triangles. The MAE between predicted and measured

energy demand for the Pareto front is 7.3 µJ. We identify two main
contributors to this error: (1) imprecision due to varying pipeline
inputs and (2) inter-step overhead. Currently, GreenPipe does not
model the inter-step overhead, but we plan to incorporate this in
future work. We argue that the imprecision due to varying pipeline
inputs should not be incorporated into GreenPipe (as discussed in
Section 2). However, we consider an MAE of 7.3 µJ acceptable to
avoid energy demands of up to 1600 µJ.

9 Conclusion
In this paper, we presented GreenPipe, an approach to automatic-
ally generate energy-efficient data-processing pipelines for resource-
constrained systems. Our GreenPipe implementation explores two
pipeline representations, one at the source-code level and one at
the assembler level. As shown in the evaluation, both representa-
tions precisely predict the energy demand of pipelines on an ARM
Cortex-M4 system with an error as low as 4.0 µJ and 2.2 µJ, respect-
ively. With these predictions, we can reduce the energy footprint
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of pipelines by up to 90 % compared to energy-unaware approaches
without sacrificing accuracy. We demonstrated the practicality of
GreenPipe by implementing a real-world application that uses
energy-efficient data-processing pipelines to identify machinery-
bearing faults. Thus,GreenPipe enables the development of energy-
efficient data-processing pipelines in resource-constrained systems.
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