
Explaining the Difference Between Edge Models and
High-Accuracy Base Models for Vision Tasks

Zhenyu Wang

University of North Carolina at Chapel Hill

Chapel Hill, USA

zywang@cs.unc.edu

Shahriar Nirjon

University of North Carolina at Chapel Hill

Chapel Hill, USA

nirjon@cs.unc.edu

ABSTRACT
Edge devices, with their widely varying capabilities, support a di-

verse range of edge AI models. This raises the question: how does an
edgemodel differ from a high-accuracy (base) model for the same task?
We introduce XDELTA, a novel explainable AI tool that explains

differences between a high-accuracy basemodel and a computation-

ally efficient but lower-accuracy edge model. To achieve this, we

propose a learning-based approach to characterize the model differ-

ence, named the DELTA network, which complements the feature

representation capability of the edge network in a compact form. To

construct DELTA, we propose a sparsity optimization framework

that extracts the essence of the base model to ensure compactness

and sufficient feature representation capability of DELTA, and im-

plement a negative correlation learning approach to ensure it com-

plements the edge model. We conduct a comprehensive evaluation

to test XDELTA’s ability to explain model discrepancies, using over

1.2 million images and 13 pair-wise model combinations, and assess-

ing real-world deployments with six participants. XDELTA excels

in explaining differences between base and edge models (arbitrary

pairs as well as compressed base models) through geometric and

concept-level analysis, proving effective in real-world applications.

CCS CONCEPTS
• Computing methodologies→ Computer vision; • Computer
systems organization→ Embedded software.

KEYWORDS
Model difference, AI explainability, network complementarity

1 INTRODUCTION
Recent literature has proposed numerous neural network mod-

els for edge devices that aim to solve the same learning task, e.g.,

image classification and object detection. These models exhibit

variations in the number of parameters, computational costs, learn-

ing capabilities, and overheads—due to the diverse range of edge

platforms they run on [54]. While some of these models are de-

veloped from scratch [13, 33], many are derived from large and

complex models [6, 51] through various compression and trans-

formation techniques [34, 36] to satisfy the resource limitations of

edge devices. Even after deployments, these models continue to

evolve as they are trained on new data [19, 44], and/or when their

architectures are modified [5, 40]. With so many model variants, it

becomes crucial [39] to understand the differences between their

decision-making processes, which offers more insight than mere

comparison of accuracy numbers.

Unfortunately, existing explainable AI techniques that are pri-

marily developed for standalone models [7, 47] are inadequate for

Edge Model DELTA ModelBase Model

Edge Feature DELTA FeatureBase Feature

Figure 1: XDELTA provides explanations for why the edge model
predicts incorrectly, contrasting with the accurate predictions of the
base model by leveraging the proposed DELTA network’s feature
representation.

comparing and contrasting the capabilities and differences between

a high-accuracy base model and a computationally efficient but

lower-accuracy edgemodel. Firstly, they do not provide any relative

explanations. Their focus is solely on explaining individual model

behavior on specific inputs, which does not provide interpretable

relative differences between a pair of models. Secondly, they do not

provide generalizable explanations. Their outcome is too specific to

the given input, which does not generalize across many examples

and multiple datasets. Recent works on model similarity analysis

enable architectural-wise segment equivalence measurement and

distance-based similarity metric comparison [12, 17, 26]. However,

these techniques fall short in effectively explaining the fine-grained

specifics of differences in instance-based decision-making processes

among various base and edge models. Hence, devising a new tech-

nique that characterizes the generatlized relative difference between

a base and an edge model has remained an open problem.

In this paper, we propose — XDELTA, a new kind of explainable

AI technique that categorizes and summarizes the explanations

behind an edge model’s relatively poor performance compared to

a base model. It performs both geometric and semantic explana-

tion analysis of the disparities between the feature maps of two

models and provides a breakdown of cases where the edge model

fails to correctly classify but the base model succeeds. The develop-

ment of XDELTA involves two major tasks: (1) construction of a

difference or DELTA model that represents the relative difference

between base model and edge model, and (2) the generation and

summarization of explainable differences between the model pair.

The DELTA model plays a critical role in XDELTA. Figure 1

illustrates how the DELTA model behaves in XDELTA. Given a

1

high-accuracy base model and a relatively lower-accuracy edge
model, we construct a DELTA model that is compact in its size

and complexity, and is complementary in its ability to enhance and

rectify the feature representation of the edge model, as such, when

the edge model and the DELTA model are fused, their combined

performance is akin to the base model. We note that the goal of

DELTA is not to approximate the base model; rather, it aims to

approximate the difference between the base and the edge model.

This is illustrated by the activation maps in Figure 1.

The construction of DELTA is a challenging feat. First, since

the DELTA model complements the edge model, it primarily needs

to capture the essence of the base model in a compact network

architecture with reduced model complexity and high efficiency

(adhering to Occam’s Razor principle). We formulate this as a sub-

graph extraction problem, where the objective of the subgraph is

to preserve the base model’s partial feature-representation capabili-

ties, rather than to maintain the accuracy of the base model in its

entirety—since the edge model also contributes its features when

DELTA is fused with it. Second, the DELTA model needs to extract

those features from the input that complement the edge model’s

feature representations. This requires a different kind of algorithmic

design that not only considers the overall representation capability

of the fused model but also carefully make the contributions of the

edge and DELTA models complementary.

To address these challenges, we devise a new structured sub-

graph extraction algorithm that is well-suited to DELTA models

and a new objective function that considers both the feature repre-

sentation quality of the fused model while keeping the feature maps

of the DELTA and the edge models negatively correlated (i.e., com-

plementary) to each other. Once the DELTA model is obtained, it is

applied to the test dataset, which may include previously unseen

images, to infer and analyze the semantic concepts missed by the

edge model but captured by the base model. This helps understand

the reasons behind the edge model’s subpar performance at the

human-understandable semantic level.

We extensively evaluate XDELTA’s efficacy and algorithmic as-

pects across various scales and configurations. We leverage four

popular image datasets containing over 1.2 million images and 13

compatible model pairs derived from 11 image classifiers. Addi-

tionally, six participants assess explanations in a real-world indoor

scene recognition deployment. We demonstrate that XDELTA ex-

cels at explaining differences between base and edge models from

multiple perspectives. It employs high-level geometric categoriza-

tion to quantify activation region patterns, revealing deficiencies

in the edge model. Furthermore, XDELTA provides fine-grained

concept-level explanations, identifying missing semantic concepts

during edge model decision-making and explaining misclassifica-

tions. Notably, XDELTA performs well with both arbitrary model

pairs and compressed models (edge versions of base models). Fi-

nally, the real-world deployment demonstrates XDELTA’s ability

to explain differences between edge and base models across eight

environment categories, using a total of 421 mobile phone images.

2 MOTIVATION
A wide variety of neural networks with different parameter sizes,

computational costs, learning capabilities, and overheads exist that

-10 0 10 20 30 40 50 60 70 80
Parameters (M)

-4

-2

0

2

4

6

8

10

12

GF
LO

PS

ShuffleNetV2-0.5
SqueezeNet

MnasNet-1.0

MnasNet-0.75
MnasNet-0.5

EfficientNet-B0
MobileNetV2

MobileNetV3-L

ResNet50

ResNet101

ResNet152

RegNetX8GF

ResNeXt50

EfficientNetV2-S ConvNeXt-S

EfficientNet-B5
Wide-ResNet50-2

DenseNet-161

EfficientNet-B4

DenseNet-169

Figure 2: Parameter and FLOPS distribution of various CNN models
for ImageNet-1K [45] classification task.

ShuffleNetV2
(Edge)

ResNet50
(Base)

Input

DPBS:

CCA:

Linear
CKA

Lacks Explanation

:

Feature

ShuffleNetV2
(Edge)

ResNet50
(Base)

Input

Jaccard Index:

Dice Coefficient:

Overlap Coefficient:

Not Generalized
Class Activation Map

Figure 3: Analyzing model difference with features.

solve the same learning task. In Figure 2, for example, we plot 20

popular Convolutional Neural Networks (CNNs) [3] for the image

classification task, with computational cost measured using [2].

Models in the lower-left rectangle have lower parameter sizes and

computational costs (FLOPS) compared to those in the upper-right

rectangle. These smaller, computationally efficient models, aka the

edge models, are generally suitable for resource-constrained edge

devices but usually exhibit lower accuracy than state-of-the-art base
models designed for high-end machines. We aim at understanding

the reasons behind this accuracy gap between an edge model and a

high-accuracy base model.

Analyzing Model Difference Using Performance Metrics. One
straightforward way to compare two models is to directly compare

their performance metrics, such as parameter size, FLOPS, and ac-

curacy. For example, ShuffleNetV2, in comparison with ResNet50, is

18 times smaller, 100 times less computationally intensive, and 15%

less accurate on the ImageNet-1K dataset. While these performance

metrics are simple, they only provide numerical values without

explaining the reasons behind the accuracy loss.

Analyzing Model Difference Using Feature Similarity. An-
other, more advanced approach for analyzing model differences

is to compare feature representations. As shown in Figure 3, fea-

tures extracted from the last layer of each model’s feature extractor

are analyzed for similarity or correlation using various metrics

such as Canonical Correlation Analysis [43], Linear Centered Ker-

nel Alignment [18], and Dot Product-Based Similarity [18]. This

method is superior to simply comparing accuracy or parameters

because it provides insights into how models represent data inter-

nally, revealing more about their learning processes and potential

strengths or weaknesses. However, these metrics still provide nu-

merical values representing latent feature space information that is

2

ShuffleNetV2
(Edge)

ResNet50
(Base)

Input

DPBS:

CCA:

Linear
CKA

Lacks Explanation

:

Feature

ShuffleNetV2
(Edge)

ResNet50
(Base)

Input

Jaccard Index:

Dice Coefficient:

Overlap Coefficient:

Not Generalized
Class Activation Map

(a) Analyzing model difference with class activation maps.

Input Samples

Edge Model’s Class
Activation Maps

Base Model’s Class
Activation Maps

(b) Varying differences in class activationmaps of input samples that are correctly
predicted by base model but misclassified by edge model.

Figure 4: Model differences with class activation maps.

difficult to interpret and lacks a direct explanation of the model’s

decision-making behavior.

Analyzing Model Difference Using Activation Map. The class
activation map has been shown in recent literature to be effective in

explaining the decision-making process of a neural network. This

map highlights the important regions of the input that influence

the inference decision [60]. Based on this, in Figure 4 (a), we show

a straightforward approach to compare two models which involves

identifying and analyzing the regions where the two activation

maps differ. Metrics like the Jaccard Index [57], Dice Coefficient [49],

and Overlap Coefficient [53] are used for this analysis. While this

method helps visualize the difference between two models for a

given input, it is too specific to individual input images as shown

in Figure 4 (b). It does not generalize across examples or datasets. It

also fails to fully describe fundamental differences in model repre-

sentations, especially when nonlinear processes are involved during

map creation [47]. We make two observations from these maps:

• Activation maps vary significantly even if two classifiers make

the same prediction. Notably, for correct predictions, this means

there is no unique correct way to represent an object. Therefore,

why an edge model mispredicts should be discussed relative to a

specific base model.

• Mispredictions are caused by a variety of activation map mis-

matches such as – completely disjoint, or partially overlapped

regions in the foreground and/or the background of the input.

The semantics of these regions vary tremendously across differ-

ent inputs as well. Hence, it requires complexmodeling andmany

examples to characterize or generalize why an edge classifier
mispredicts.

These observations motivate us to design an algorithm that

learns the complex pattern of activation map mismatches and their

impact on neural network decisions. The algorithm produces a

compact, complementary model representing the difference or delta

Edge Model
(ShuffleNetV2)

Base Model
(ResNet50) DELTA Model

BucketCoffee Mug

Input

Explain Difference:
Part of the mug's handle is
missed by the edge model but
captured by the base model.

Large Language Model
Layer

Figure 5: XDELTA explains the essential information missed by edge
model that leads to a wrong prediction.

between two models. This model serves as a diagnostic tool to

explain performance differences and as a repair tool to enhance a

lower-accuracy edge network.

3 OVERVIEW OF XDELTA
XDELTA is an explainable AI technique that categorizes and sum-

marizes the explanations behind a computationally efficient but

relatively lower-accuracy edge model’s relatively poor performance

compared to a high-accuracy base model
1
. The development of

XDELTA involves two major tasks: (1) the construction of a model

that characterizes the difference between the model pair, and (2)

the generation and summarization of explainable semantic differ-

ences between the model pair. In this paper, we limit our scope to

CNNs for image classification tasks considering their prevalence in

recent embedded AI literature [37, 41]. For other types of models,

the framework to implement XDELTA will be the same, but the

details will be slightly different.

3.1 DELTA Network Construction
Given a compatible model pair, we define DELTA as a network that

models the shortcomings in the edge model’s data representation

ability, relative to the base model’s ability to do the same. A DELTA

network has two salient properties:

• The DELTA model should complement the edge model’s feature

representation such that when the twomodels are fused together,

the accuracy of the fused model is as high as the base model’s

accuracy.

• The DELTA network should be minimal in size and execution

cost (FLOPS) to adhere to the Occam’s Razor principle. As such,

the combined size as well as the execution cost of the DELTA

and the edge model should be lower than the base model’s size

and execution cost, respectively.

Two major challenges lie ahead in constructing DELTA network:

(1) devising a network that preserves partial knowledge from base
model, such that it complements features of edgemodel; (2) ensuring

the compactness and efficiency of DELTA model while retaining

the capability of capturing the features missed by edge model.

1
The model pair is defined as having been fully trained and exhibiting a minimum

accuracy difference (of certain percentage) on a test dataset. The models we study in

this paper, have at least 10% accuracy differences.

3

3.2 Differential Explainable AI
Given a constructed DELTA network, several steps are required to

clearly illustrate the differences between the corresponding model

pair. We employ an existing explainable AI tool to generate a class

activation map for the input, specifically highlighting areas cap-

tured by the base model but missed by the edge model. This map

is then fed into the Large Language Model (LLM) layer to gener-

ate detailed and readable explanations, illustrating the differences.

Additionally, we provide a geometric and semantic categorization

summary outlining the behavior of the DELTA model, which em-

phasizes differences between the base model and various types of

edge models (either directly derived from the base model or com-

pletely different ones).

Figure 5 illustrates the concept of XDELTA.When given an input

image of a coffee mug, the edge model misclassifies it due to its

inability to capture information from the handle, as observed in the

class activation map generated by the DELTA model. This results

in a prediction of a bucket, focusing primarily on the mug’s body.

The generated map is then passed to the LLM layer, which pro-

duces readable concept-level explanations highlighting the model

difference.

4 DELTA NETWORK CONSTRUCTION
4.1 Overview
A DELTA model enhances the data representation capability of an

edge network in a compact and complimentary manner as such

when it’s fused with the edge network, their combined data repre-

sentation capability becomes as close as possible to the basemodel’s.

To achieve this, we propose a network architecture for DELTA that

resembles the English letter Y where the two branches capture the

essence of the base and the edge model, respectively, and informa-

tion flowing through these two branches are fused by the remaining

part of the network to construct a representation of the input that

we call the DELTA feature. During inference, DELTA features are

used in conjunction with features extracted by the edge network to

classify the input.

The architecture of a DELTA network along with the correspond-

ing base and the edge network architectures is shown in Figure 6.

The construction of DELTA has three steps:

• Step 1 – Extracting structured subgraph from the base network to
construct a portion of the DELTA that brings the base network’s
data representation capability into it.

• Step 2 – Constructing the DELTA feature extractor that adapts

and concatenates features extracted by the edge model and the

subgraph of the base model.

• Step 3 – Training the DELTA network by explicitly ensuring

that the DELTA network is complementary to the edge network’s
ability to classify input data.

4.2 Step 1 – Structured Subgraph Extraction
In this step, a major part of the DELTA network is constructed

by extracting the structured subgraph from the base network. We

describe the fundamentals and rationale behind developing a new

Reliable
Prediction

Unreliable
Prediction

Reliable
Prediction Loss

Base ModelDELTA ModelEdge Model

Inference Training

Feature
Resizing
Module

Feature
Finetuning

Module

Pooling

Pooling

Fully
Connected

Layer

Squeeze-and-
Excitation Residual

Block

Extracted
Structured
Subgraph

Fδ

FE||δ

FB

Edge
Feature
Extractor

Base
Feature
Extractor

Edge
Classifier

Base
Classifier

Base
Feature

DELTA
Feature

Resized
Edge

Feature
FE

Raw Edge
Feature

Fused Feature

Step 1

Step 2

Step 3

Figure 6: DELTA model architecture.

subgraph extraction technique, followed by an optimization frame-

work to obtain the parameters for the extraction process, and finally,

the structured subgraph extraction steps.

Fundamentals and Rationale. Structured subgraph extraction

entails application of binary masks to network weight matrices in

order to reduce their size and execution cost:

𝑊sparse = 𝑀 (𝜍) ⊗𝑊
dense

(1)

where,𝑊 and𝑀 (𝜍) are the weight and the maskmatrices; 𝜍 denotes

the sparsity of the mask (i.e., number of zero elements divided by

total number of elements); ⊗ is the element-wise product operation.

A large body of recent works are dedicated to finding optimal

sparsity rates for different network constructs [27, 51]. A funda-

mental limitation of these works, however, is that the search space

being too large, they get stuck in a bad local minima and perform

sub-optimally. We observe that instead of directly searching for

sparsity rates, if we redefine sparsity as a convex combination of 𝑛

candidate sparsity rates {𝜍𝑖 } with the corresponding sparsity co-

efficients {𝛾𝑖 }, the search converges fast and becomes resilient to

getting stuck in a bad local minima:

𝜍 = [𝛾1 𝛾2 · · · 𝛾𝑛] × [𝜍1 𝜍2 · · · 𝜍𝑛]𝑇 (2)

The mathematical insight behind the above observation is that

when the loss function L(𝑊) reaches a local minima for weight

𝑊0, L(𝑊) is convex with respect to𝑊 ∈ [𝑊0 − 𝜖,𝑊0 + 𝜖], where 𝜖
is a small perturbation. Hence, when a mask𝑀 (𝜍) is applied, the
loss function L(𝑊 ⊗ 𝑀 (𝜍)) becomes convex with respect to𝑀 (𝜍)
given a frozen𝑊 . To solve this convex optimization problem, we

assume 𝑀 (𝜍) ∈ [0, 1]𝑛 is continuous (and discretize afterwards

without violating correctness). Using Jensen’s inequality:

L
(
𝑊 ⊗

𝑛∑︁
𝑖=1

𝛾𝑖𝑀 (𝜍𝑖)
)
≤

𝑛∑︁
𝑖=1

𝛾𝑖L
(
𝑊 ⊗ 𝑀 (𝜍𝑖)

)
(3)

Based on the above, we can always find a subset {�̂� (𝜍 𝑗)} for which
the following holds:

4

(a) Typical Mask (b) Our Approach

Figure 7: Illustration of extracting subgraph from one layer.

L
(
𝑊 ⊗

𝑛∑︁
𝑖=1

𝛾𝑖𝑀 (𝜍𝑖)
)
≤ min

𝑗
L

(
𝑊 ⊗ �̂� (𝜍 𝑗)

)
(4)

Proof. To prove Equation (4) by contradiction, we first simplify

it by setting:𝑊 ⊗
𝑛∑
𝑖=1
𝛾𝑖𝑀 (𝜍𝑖) → 𝑋,𝑊 ⊗ 𝑀 (𝜍𝑖) → 𝑌𝑖 , and then as-

sume it’s incorrect, i.e., ∀𝑖,L(𝑋) > L(𝑌𝑖). If so, then
𝑛∑
𝑖=1
𝛾𝑖L(𝑌𝑖) <

𝑛∑
𝑖=1
𝛾𝑖L(𝑋) = L(𝑋)

𝑛∑
𝑖=1
𝛾𝑖 = L(𝑋), which violates (3). Hence, Equa-

tion (4) holds. □

In other words, Equation (4) shows that a mask formed by

weighted averaging keeps the loss at a relatively lower value. Since

the loss remains closer to the local minima, the search process takes

less time to converge and accuracy preservation becomes easier.

Optimization Framework. Given the new definition of spar-

sity, a new challenge is to find the optimal sparsity coefficients

[𝛾1 𝛾2 · · · 𝛾𝑛] for each layer that is processed. These coefficients

are used to generate masks that are applied to corresponding layers

for subgraph extraction. The optimization goal is to minimize the

loss of essential feature representation capability as well as the

execution cost of the extracted subgraph. The entire framework

runs on high-end server to expedite the optimization process.

To achieve this, an extended version of the base network that

explicitly incorporates sparsity coefficients is constructed. For each

convolutional and linear layer 𝐿𝑖 , 𝐾 copies are created, and for each

copy 𝐿𝑖, 𝑗 , a sparsity rate 𝜍𝑖, 𝑗 ∈ {𝜍1, · · · , 𝜍𝑛} and a learnable weight

𝛾𝑖, 𝑗 is assigned. A larger 𝐾 allows finer search space exploration

for optimal solutions but is limited by the server’s computational

capacity.

Figure 7 shows different approaches to extract subgraph from

one layer. The same applies to all layers being processed. The output

𝑦𝑖 of layer 𝐿𝑖 is the weighted combination of the outputs of all 𝐿𝑖, 𝑗

branches: 𝑦𝑖 = Σ𝐾
𝑗=1

|𝛾𝑖, 𝑗 | × 𝑦𝑖, 𝑗 . The loss function of the network is

as follows:

L𝑝 = 𝜆0L𝐶𝐸 + 𝜆1
𝐿∑︁
𝑖=1

𝐾∑︁
𝑗=1

|𝛾𝑖, 𝑗 | (𝛼 ·𝐺𝑖, 𝑗 + 𝛽 · 𝐻𝑖, 𝑗) (5)

where L𝐶𝐸 is the cross-entropy loss that accounts for accuracy

to measure the quality of represented feature. The second term

accounts for the cost of memory access 𝐺𝑖, 𝑗 and the number of

multiply-accumulate operations per second 𝐻𝑖, 𝑗 . Incorporating

these costs into the loss function yields computationally inexpen-

sive substructures suitable for resource-constrained systems. 𝜆0, 𝜆1,

𝛼 and 𝛽 are hyperparameters controlling the relative strength of

each term.

During the training of the extended network, masked parameters

are kept frozen as such no gradient flows through them. Once the

training process converges, the sparsity coefficients are recorded,

which are used in the subgraph extraction process. The extended

network is discarded at this point since it is no longer needed.

Subgraph Extraction Process. Once the optimal sparsity coeffi-

cients {𝛾𝑖, 𝑗 } are obtained, we take their absolute values and nor-

malize as 0 ≤ 𝛾𝑖, 𝑗 ≤ 1, Σ𝐾
𝑗=1
𝛾𝑖, 𝑗 = 1, the sparsity rate 𝜍 is computed

using Equation (2). Corresponding masks 𝑀 (𝜍) are generated by

applying a 𝑙2 norm-based importance ranking technique [10, 24]

and then applied to each layer of the base model that is to be ex-

tracted using Equation (1). This results in a subgraph of the base
model which is fine-tuned further by retraining. The fine-tuning

process includes model scaling [14, 52] and several data augmenta-

tion methods such as random cropping [3], horizontal flipping [3],

random perspective adjustment [3], color jittering [3], and label

smoothing [38].

The obtained subgraph is compact, yet its size is further reduced

by removing the last few layers, since they incur high overhead but

offer limited semantic gain. This results in an extremely compact

DELTA model that adheres to size and FLOPS constraints. While

dropping these layers diminishes the subgraph’s representational

capability, it still effectively complements the edgemodel and fulfills

its intended purpose.

4.3 Step 2 – Constructing DELTA Feature
In this step, features from the edge and the subgraph extracted from

base networks are fine-tuned and combined to form the DELTA

features.

Fine-Tuning Features. In order to improve the representational

capability of the base network’s subgraph, a squeeze-and-excitation
[15] block with skip connection [13] is added to obtain the inter-

dependencies between feature channels. These are further passed

through a global average pooling layer to ensure that the number of

elements in the feature vector is the same as the channel size of the

input feature map. Finally, the features are reshaped and linearly

transformed to a lower dimension using a fully-connected layer.

The edge model is unchanged, and the features from the edge net-
work is only down-scaled by a pooling layer to incorporate enough

information that helps speedup the convergence of DELTA feature

construction process.

Combining Features. The fine-tuned features are concatenated

to form an extended feature vector – which is fed to a two-layer

perceptron (MLP) network that acts as a feature resizer. This re-

sizer is essential for merging features with different dimensions. It

ensures the combined feature after resizing can be averaged with

the down-scaled features from the edge model and then fed to the

base model’s classifier (i.e., layers after the feature extractor) for

comparable accuracy.

4.4 Step 3 – Training DELTA Network
In this step, the DELTA network is trained while the edge and the

base models remain frozen. Considering the fused feature quality,

complementary nature, and efficiency, the loss function includes

three terms — mean squared error (L𝑀𝑆𝐸), feature-wise negative
5

correlation (L𝐹𝑁𝐶), and sparsity regularization (L𝑆𝑅). The hyper-
paramters 𝜆𝐹𝑁𝐶 and 𝜆𝑆𝑅 control the relative strength of corre-

sponding terms.

L = L𝑀𝑆𝐸 + 𝜆𝐹𝑁𝐶 × L𝐹𝑁𝐶 + 𝜆𝑆𝑅 × L𝑆𝑅 (6)

Mean Squared Error (MSE). This term ensures that when the

DELTA features are fused with the edge model, their combined

accuracy is on par with the base model’s accuracy.

L𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(
𝐹
(𝑖)
𝐸 | |𝛿 − 𝐹

(𝑖)
𝐵

)
2

(7)

where 𝐹
(𝑖)
𝐸 | |𝛿 and 𝐹

(𝑖)
𝐵

are feature representations of the fused model

and the base model for the 𝑖-th (1 ≤ 𝑖 ≤ 𝑁) training example.

Feature-wise Negative Correlation (FNC). This term ensures

that DELTA is complementary to the edge model as such their

features are negatively correlated to each other. It forces DELTA to

learn different regions on the activation map than what the edge
model attends to while the fused feature representation is as close to

the base model’s as possible. Unlike traditional negative correlation

learning approaches [31] that penalize two models at the instance

level, we introduce a feature-wise correlation loss designed for

DELTA models:

L𝐹𝑁𝐶 =
2𝜆

𝑁

𝑁∑︁
𝑖=1

((
𝐹
(𝑖)
𝐸

− 𝐹 (𝑖)
𝐸 | |𝛿

) (
𝐹
(𝑖)
𝛿

− 𝐹 (𝑖)
𝐸 | |𝛿

))
+ 1

2𝑁

𝑁∑︁
𝑖=1

((
𝐹
(𝑖)
𝛿

− 𝐹 (𝑖)
𝐵

)
2

+
(
𝐹
(𝑖)
𝐸

− 𝐹 (𝑖)
𝐵

)
2

) (8)

where 𝐹
(𝑖)
𝛿

and 𝐹
(𝑖)
𝐸

denote the DELTA feature and resized edge
feature for the 𝑖-th (1 ≤ 𝑖 ≤ 𝑁) training example, respectively, and

𝜆 is a hyperparameter that adjusts the strength of the correlation

penalty.

Sparsity Regularization (SR). The sparsity of the DELTA network

is regularized by penalizing the absolute magnitude of its weights

so that the model retains only the relevant features.

L𝑆𝑅 =

#layers∑︁
𝑙=1

(∑︁
{ 𝑓 }

����𝑊 𝑓

𝑙

����
𝑔
+

∑︁
{𝑐 }

����𝑊 𝑐
𝑙

����
𝑔

)
(9)

where | |𝑊 𝑓

𝑙
| |𝑔 and | |𝑊 𝑐

𝑙
| |𝑔 denote the group lasso [55] for filter-

and channel-wise weights for 𝑙-th convolutional layer.

Coefficient Sensitivity. The MSE coefficient is set to 1 to estab-

lish a robust fused model as the baseline. The negative correlation

coefficient is less than half of MSE to balance correlation with-

out sacrificing accuracy, while sparsity regularization uses a much

smaller coefficient to prevent it from dominating, as its effect is

stronger than the other terms.

5 DIFFERENTIAL EXPLAINABLE AI
XDELTA analyzes the class activation map of the DELTA network

to generate a summary of the edgemodel’s shortcomings that is gen-

eralizable across multiple datasets. It leverages the DELTA model

Dataset Base Model Edge Model Summary Type
ImageNet-1K ResNet50 ShuffleNetV2 Geometric

CIFAR10 VGG16 AlexNetS Geometric

MIT Indoor Scenes ResNet18 SqueezeNet Geometric

COCO ResNet50 ShuffleNetV2 Semantic

Table 1: Models and dataset

Models base edge 0 edge 1 edge 2
Compression Ratio (%) 0 89.15 97.79 98.58

Accuracy (%) 80.10 69.12 61.07 53.80

Table 2: Configuration of base model and edge models

to summarize cases where an edge model underperforms compared

to a base model on a given dataset. There are three simple steps:

• Step 1 – Initialization: An existing explainable AI tool, e.g.,

GradCAM++ [7] is used to obtain the activation map of the

DELTA network for each image in the dataset. These activa-

tion maps are segmented (by applying a threshold on activation

values) to obtain one or more disjoint activation regions. This

process is repeated for the edge model.

• Step 2 – Geometric Categorization: For each image, activation

regions from the edge and the DELTA are geometrically com-

pared and categorized into one of seven predefined categories.

A summary statistics is produced by counting the occurrences

for each category. Figure 8 shows an example.

• Step 3 – Semantic Categorization: This step applies when the

input dataset contains fine-grained semantic labels for different

segments inside each image. The activation regions of the DELTA

model inherit those semantic labels depending on their overlaps

with the labeled segments. In cases where ground truth semantic

labels are unavailable, we employ the GPT-4o LLM to generate

the labels. A summary is produced by counting the occurrences

of each semantic label. Figure 9 shows an example.

6 DATASET-DRIVEN EVALUATION

Datasets and Models. We conduct experiments on four image

datasets: ImageNet-1K [45], CIFAR10 [20], MIT Indoor Scenes [42],

COCO [29]. For each dataset, we choose a representative pair of

models whose input dimensions are compatible with the dataset,

as shown in Table 1. We report geometric summaries for the first

three datasets and a semantic summary for the last one.

To study the effect of compression on lost semantics, we use

ResNet56 [13] as the basemodel pre-trained [1] on CIFAR10 dataset.

A fine-tuning dataset is constructed using the ImageNet samples

based on the records of the enlarged CINIC10 [8]. This fine-tuning

dataset contains similar categories as CIFAR10 dataset while pre-

serving higher resolution and more details. We use a randomly

generated mask with controlled global sparsity to perform struc-

tured pruning on the ResNet56 using 𝑙2-norm as pruning criteria.

As a result, we obtain four models: a base model and three edge

models edge0, edge1 and edge2, as shown in Table 2.

Geometric Categorization Activation regions of the edge and the
DELTA models show different degrees of overlap — having differ-

ent impacts on the edge model. Disjoint regions complement the
6

34.6%

23.6%

7.2%
3.8%10.1%7.2%

13.5%

Local Complement (0.11)
Global Complement (0.12)
Local Enhancement (0.87)
Global Enhancement (0.87)

Local Mix (0.49)
Global Mix (0.46)
Global & Local Mix (0.44)

ImageNet-1K
(ResNet50-ShuffleNetV2)

52.5%

1.9%

23.1% 1.7%
0.9%

19.5%

0.4%

Local Complement
Global Complement
Local Enhancement
Global Enhancement

Global & Local Mixture
Local Mixture
Global Mixture

CIFAR10
(VGG16-AlexNetS)

10.7%

8.4%32.0%

13.8%

22.8%

7.7%
4.6%

Local Complement
Global Complement
Local Enhancement
Global Enhancement

Local Mixture
Global Mixture
Global & Local Mixture

ImageNet-1K
(ResNet50-ShuffleNetV2)

29.8%3.4%

23.6%

5.3%
14.9% 9.1%

13.9%

MIT Indoor Scene
(ResNet18-SqueezeNet)

(a) Summary of geometrically categorized explanations.

Local Complement ——- Local Enhancement

(b) Examples of geometric categorization from CIFAR10.

Figure 8: Geometrically categorized explanations of different model
pairs and datasets.

edge model by bringing missing information. Overlapping regions

enhance the edge model by suppressing noise. Often complement-

ing and enhancing regions appear in a mix. These regions may be

located on or near local segments of the target object, or spread out

globally on other parts of the image.

Figure 8 (a) explains the incorrect predictions by the edge models

by categorizing the reasons into seven different categories. For the

VGG16-AlexNetS pair on CIFAR10, local complementary regions

explain the majority of its misprecitions since AlexNetS misses a

large number of important regions on the target object. For the

ResNet50-ShuffleNetV2 pair on ImageNet-1K, the local enhance-

ment explains the majority of its mispredictions since ShuffleNetV2

attends to many noisy regions which are suppressed by the DELTA

model. For the ResNet18-SqueezeNet pair on MIT Indoor Scenes

dataset, both global spatial features and local object features are

complemented by the DELTA model to correct most of the mispre-

dictions by the SqueezeNet. We also quantify DELTA’s behavior

through an overlapping score, computed as the intersection of the

regions of edge and DELTA divided by the DELTA region. Figure 8

(b) shows example images for the top two geometrically categorized

explanations for AlexNetS’s poor performance on CIFAR10. The

mean overlapping scores are indicated in parenthesis in the legend

for each category. Cyan and magenta patches highlight the regions

that DELTA model and edge model focus on, respectively. For ex-

ample, in the first image, AlexNetS fails to classify it as a horse due

to a missed eye. DELTA precisely captures the eye, correcting the

misclassification.

Semantic Categorization Figure 9 (a) shows the top 10 most

frequently missed semantic concepts that the DELTA model brings

in to correct ShuffleNetV2’s (edge model) mispredictions. Notably,

about a third of the mispredictions are explained by the model’s

inability to recognize animal body parts such as eyes, nose, and

facial features. Some example images are shown in Figure 9 (b) with

activation regions that DELTA captures. We also provide dataset-

wise explanations, as shown in Figure 9 (c), highlighting the top

4.0%
4.4%

4.5%
4.7%5.7%10.2%

4.9%

12.0%

20.2%
29.4%

toy body parts
bird body parts
fast food parts
umbrella body parts
tennis racket parts

electronic body parts
oven body parts
furniture body parts
vehicle body parts
mamal body parts

4.0%
4.4%

4.5%
4.7%5.7%10.2%

4.9%

12.0%

20.2%
29.4%

toy body parts
bird body parts
fast food parts
umbrella body parts
tennis racket parts

electronic body parts
oven body parts
furniture body parts
vehicle body parts
mamal body parts

(a) Top 10 missed concepts by ShuffleNetV2.

(b) Example images of animals and vehicles.
Bus misclassification is mainly due to
misinterpreting the body, window, and
pillar.

Tennis racket misclassification is

mainly due to misinterpreting the head,

handle and shaft.

Dog misclassification is mainly due to
misinterpreting nose, eye, and cheek.

(c) Category-wise and object-level explanations.

Figure 9: Semantically categorized explanations of ResNet50-
ShuffleNetV2 model pair on COCO dataset.

three missing concepts for three frequently misclassified categories

— bus, tennis racket, and dog, along with a complete breakdown

explanation example for the first category (bus).

Lost Semantics in Model CompressionWe conduct an exper-

iment to understand the semantic loss in a model due to various

degrees of model compression. We construct the DELTA model for

each pair of base model and edge models from Table 2. The key-

words are extracted from LLM layer to understand the frequency

of the missed semantic concepts that corresponds to the loss of

accuracy and feature representation capability. Figure 10 shows an

example image of a horse correctly predicted by the base model

but misclassified by the edge model. The text output of each model

pair explains the difference between the edge and base models at

various levels of detail, which highlights model disparity change

after increasing the sparsity rate.

For an aggregate analysis, we identify the top-5 frequentlymissed

concepts for each model pair and create a union list shown in Fig-

ure 11 for comparison. As the compression ratio increases, the

models lose their ability to capture features in categories like fe-

lines, ships, and trucks. However, feature loss for bovidae (mammal

with unbranched horns) is less affected due to their distinct recog-

nition features. For complex structures like automobiles, higher

compression ratios significantly impact the model’s feature capture.

7 DEPLOYMENT EXPERIMENT
In order to evaluate the performance of XDELTA in real-world sce-

narios, we conduct a study involving six participantswho contribute

a total of 421 pictures of their living and working environments

from four different environments. Objects in these images are classi-

fied locally on the user’s phone using edge and DELTA models, and

remotely using base model, listed in Table 3. XDELTA is applied to

summarize the shortcomings of the edge model — geometrically as

7

Forehead, cheek,
foreleg, and hind leg

of the horse.

Nose area and
front leg of
the horse.

The lower front
leg of the horse.

LLM Output:

Input Base-Edge0 Base-Edge1 Base-Edge2

Figure 10: Example LLM output of base-edge model pairs.

auto-
mobile
door

auto-
mobile
wheel

auto-
mobile
window

bovidae
body

bovidae
head

bovidae
leg

feline
eye

feline
face

feline
nose

ship
body

truck
wheel

50

100

150

200

Fr
eq

ue
nc

y
of

 M
iss

in
g

Se
m

an
tic

s

Base - Edge0 Base - Edge1 Base - Edge2

auto-
mobile
door

auto-
mobile
wheel

auto-
mobile
window

bovidae
body

bovidae
head

bovidae
leg

feline
eye

feline
face

feline
nose

ship
body

truck
wheel

50

100

150

200

Fr
eq

ue
nc

y
of

 M
iss

in
g

 S
em

an
tic

 C
on

ce
pt

s

Figure 11: The missing concept frequency comparison between dif-
ferently compressed edge models.

Models Param.(M) FLOPS(M) Accuracy(%)
SqueezeNet 0.77 0.97 64.85

ResNet18 11.21 2.38 81.00

XDELTA 4.55 1.98 78.86

Table 3: Models in XDELTA deployment.

well as semantically. We implement XDELTA for Google Pixel 2XL

using pytorch 1.12, which includes edge and DELTA models. The

base and edge models are pre-trained on MIT Indoor Scenes dataset

of 67 categories. The DELTA model is created and evaluated on

the user-contributed data containing eight different categories of

images. All images are resized to 256×256 before feeding into the

networks.

Geometric Categorization Figure 12 (a) summarizes the cause of

incorrect predictions by SqueezeNet (the edge model) by geometri-

cally categorizing the explanations. In about 57.3% cases, DELTA

brings complementary information from local objects (e.g., sofa

seat and table surface) and from spatial contexts (e.g., kitchen area

and stairs) as such the edge model may focus on certain salient

parts with less noisy regions – which is consistent with the dataset-

driven experiment for the same pair of models. Figure 12 (b) shows

example images (with marked activation regions for both DELTA

and edge models) for the top two geometrically categorized expla-

nations behind SqeezeNet’s poor performance on user-contributed

data. As expected, the enhancement category yields higher over-

lapping scores, while the complement category results in lower

scores.

Semantic Categorization Figure 13 (a) shows the top 10 most

frequently missed semantic concepts that the DELTA model brings

in to correct SqueezeNet’s (edgemodel) mispredictions. For instance,

most of the mispredictions are explained by the network’s inability

to recognize small parts of a larger object such as chair arms and

1.1%

28.1%12.4%

29.2%

1.1%15.7%

12.4%

Local Enhancement
Local Complement
Global Mix
Global Complement
Global Enhancement
Global & Local Mix
Local Mix

34.6%

23.6%

7.2%
3.8%10.1%7.2%

13.5%

Local Complement (0.08)
Global Complement (0.12)
Local Enhancement (0.60)
Global Enhancement (0.53)

Local Mix (0.14)
Global Mix (0.28)
Global & Local Mix (0.16)

ImageNet-1K
(ResNet50-ShuffleNetV2)

(a) Summary of geometrically categorized explanations.

Local Complement ——- Local Enhancement

(b) Examples of local and global feature complement.

Figure 12: Geometric explanations on user data.

10.6%

8.1%
12.2%

8.1%
6.5%

9.8%

7.3%

22.8%

8.9%

5.7%

books and notes
cabinet parts
chair parts
handrail parts
sofa parts

stairs
stove parts
table parts
toilet parts
trashbin parts

10.8%

9.0%
9.9%7.2%

7.2%

10.8%

8.1%

20.7%
9.9%

6.3%

books and notes
cabinet parts
chair parts
handrail parts
sofa parts

stairs
stove parts
table parts
toilet parts
trashbin parts

(a) Top 10 missed concepts by SqeezeNet.

(b) Examples of meeting room, kitchen and bathroom.

Figure 13: Semantic explanations on user data.

table legs. Some example images (with marked activation regions

of DELTA) are shown in Figure 13 (b).

8 COMPONENT ANALYSIS AND ABLATION
STUDIES

We conduct a series of experiments to evaluate the effect of indi-

vidual algorithmic components of the whole framework.

8.1 Experimental Setup

Datasets and Models. We conduct experiments on two image

datasets: CIFAR10 [20] and ImageNet-1K [45]. We use three high-

accuracy models (VGG16 [48], ResNet56 [13] and ResNet50 [13])

as the base models, which are also used for subgraph extraction

method evaluation based on their popularity in the literature. We

use seven popular and relatively low-accuracy models as the edge
models.

Table 4 lists the datasets and models used in this section. We

use publicly available pre-trained models [1, 3] whenever possi-

ble and train four networks on CIFAR10 by ourselves: VGG8 [48],

ResNet8 [13], AlexNetS [21] and MobileNetV2S [46] for 100 epochs

with an exponentially decaying learning rate of 0.01. AlexNetS and

MobileNetV2S are down-scaled AlexNet [21] and MobileNetV2 [46]

to match the CIFAR10 dataset, respectively; Batch normalization

8

Datasets Images Classes
CIFAR10 60,000 10

ImageNet-1K 1,431,167 1,000

(a) Datasets

Models Param.
(M)

FLOPS
(G)

VGG16 15.25 0.314

ResNet50 25.56 4.112

ResNet56 0.86 0.127

(b) Base Models

Models Param.
(M)

FLOPS
(G)

VGG8 4.44 0.068

MobileNetV2S 0.41 0.017

SqueezeNet 1.25 0.819

ShuffleNetV2 1.37 0.043

ResNet8 0.08 0.013

AlexNet 61.10 0.714

AlexNetS 23.49 0.045

(c) Edge Models
Table 4: Models and Datasets

layer is not included in VGG8; MobileNetV2S uses multiplier param-

eter of 0.35; ShuffleNetV2 [33] has 0.5× output channels; SqueezeNet

[16] is the 1.0 version. AlexNetS and AlexNet are defined as edge
models due to their low computational cost and small feature ex-

tractor size. All the FLOPS of each model is measured using [2]

Configurations. The subgraphs of VGG16 and ResNet56 are ex-

tracted on anNVIDIA Tesla K80 GPU. ResNet50 required 16 NVIDIA

Tesla V100-SXM2 GPUs due to large-sized model and dataset. The

subgraphs are extracted under the magnitude criterion and fine-

tuned for 300 epochs. A stochastic gradient descent optimizer

with exponential decay and 0.001 learning rate is used in spar-

sity optimization, 𝛼 = 10
−5
, and 𝛽 = 10

−7
. We set 𝜆0 = 0.5

and 𝜆1 = 1.0 in the loss terms. The predefined sparsity rates are

{𝜍𝑖 } ⊆ {0.125 × 𝑘 | 𝑘 = 1, 2, · · · , 7} for convolutional layers, and
{𝜍𝑖 } ⊆ {0.2 × 𝑘 | 𝑘 = 1, 2, 3, 4} for fully connected layers.

8.2 Compactness of DELTA

Baselines and Metric. We use structured pruning algorithms that

are related to our structured subgraph extraction technique as base-

lines including several state-of-the-art approaches: 𝑙1-norm [24],

ABCPruner [27], APRS [51], EZCrop [28], PFEC-KESI [22], ResRep

[9], Random Pruning [25], TMI-GKP [59]. We compare the size

and FLOPS of the extracted subgraph, and corresponding inference

accuracy with our approach. The values shown in Figure 14 are di-

rectly reported from their original published papers. The retention

of the last few layers in the subgraph is to ensure a fair comparison

with other baselines.

Parameter and FLOPS Reduction. Figure 14 (a) shows that our
subgraph extractionmethod achieves the highest accuracy of 94.61%

after removing 13.74M parameters and reducing 0.226G FLOPS

from original VGG16 model. When a more aggressive subgraph

extraction is performed on VGG16 that removes 15.05M parameters,

our method still achieves 91.35% accuracy. Figure 14 (b) shows

similar results. Our method subtracts 0.45M parameters and reduces

0.07G FLOPS from ResNet56, yet achieves the highest accuracy of

94.61%. To further verify our subgraph extraction method, we use

a large-scale dataset – ImageNet-1K that contains over 1.4 million

images. Figure 14 (c) shows that ResNet50 reaches the highest

accuracy of 75.364% after 15.07M parameters and 2.76G FLOPS

reduction.

Convergence. One of the advantages of our structured subgraph

extraction technique is its ability to converge faster. To demonstrate

this, we extract structured subgraph from VGG16 using our method

as well as by a baseline strategy that generates and applies random

0.02 0.06 0.1 0.14 0.18

92
93
94
95

FLOPS (G)

ABCPruner
APRS

EZCrop
L1

PFEC-KESI Random Pruning Ours

Ac
cu

ra
cy

(%
)

0.5 1.5 2.5

92
93
94
95

5.5 6.5
Parameter (M)Ac

cu
ra

cy
(%

)

0.02 0.06 0.1 0.14 0.18

92
93
94
95

FLOPS (G)Ac
cu

ra
cy

(%
)

(a) VGG16 trained on CIFAR10 dataset

0.04 0.06 0.08 0.1 0.12
92.5
93.0
93.5
94.0
94.5
95.0

FLOPS (G)

ABCPruner
EZCrop

PFEC-KESI
L1

Random Pruning
ResRep

TMI-GKP Ours

Ac
cu

ra
cy

(%
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
92.5
93.0
93.5
94.0
94.5
95.0

Parameter (M)Ac
cu

ra
cy

(%
)

0.04 0.06 0.08 0.1 0.12
92.5
93.0
93.5
94.0
94.5
95.0

FLOPS (G)Ac
cu

ra
cy

(%
)

(b) ResNet56 trained on CIFAR10 dataset

1.25 1.75 2.2573
74
75
76

3.75 4.0 5.25
FLOPS (G)

ABCPruner
APRS

EZCrop
Random Pruning

ResRep TMI-GKP Ours

Ac
cu

ra
cy

(%
)

10 12 14 16
74
75
76

Parameter (M)Ac
cu

ra
cy

(%
)

1.6 2.0 2.473
74
75
76

3.6
FLOPS (G)Ac

cu
ra

cy
(%

)

(c) ResNet50 trained on ImageNet-1K dataset

Figure 14: Our subgraph extraction method achieves the best trade-
off between accuracy and model compression.

0 250 500 750 1000 1250 1500 1750 2000
0
1
2
3
4

Iterations

Random ([78%, 82%]) Ours (= 85.44%)

Lo
ss

Figure 15: Our subgraph extraction method converges fast and its
loss remains lower than the baseline.

masks from pre-configured sparsity rates for different layers. We

use 10 different mask settings. For our method, a single mask is

created using averaged sparsity and then applied to a layer. For the

baseline, each mask is individually applied to get 10 different sets of

results whose mean and variance are used for comparison. Figure 15

shows the cross-entropy loss of both techniques as the model is

trained (fine-tuned) on CIFAR10 dataset. We use the same training

configurations for fair comparison. We observe that our method not

only converges fast but also keeps the loss relatively lower, which

ensures its accuracy preservation ability during fine-tuning.

8.3 Complementary Capability of DELTA

Models and Metric. We take all nine compatible pairs of base
and edge models from Table 4, and generate DELTA models under

different parameter and FLOPS constraints. We use the following

expressions to express parameter ratio and FLOPS ratio between

two models:

P𝐷/𝑀 =
𝑝𝑎𝑟𝑎𝑚(𝐷)
𝑝𝑎𝑟𝑎𝑚(𝑀) , F𝐷/𝑀 =

𝑓 𝑙𝑜𝑝𝑠 (𝐷)
𝑓 𝑙𝑜𝑝𝑠 (𝑀) , 𝑀 ∈ {𝐸, 𝐵}

where, 𝐷 , 𝐸, and 𝐵 denote DELTA, edge, and base models, respec-

tively; 𝑝𝑎𝑟𝑎𝑚(·) and 𝑓 𝑙𝑜𝑝𝑠 (·) denote parameter size and FLOPS of

9

DELTA Overall
Acc. (%)

Δ Acc.
(↑ %) P𝐷/𝐸 F𝐷/𝐸 P𝐷/𝐵 F𝐷/𝐵

𝐷0 92.42 8.65 0.088 0.58 0.026 0.13
𝐷1 93.22 9.45 0.118 0.71 0.034 0.15

𝐷2 93.51 9.74 0.148 0.74 0.043 0.16

(a) Accuracy improvement by DELTA for VGG16-VGG8 pair on CI-
FAR10. VGG16’s accuracy on CIFAR10 is 94.16%.

DELTA Overall
Acc. (%)

Δ Acc.
(↑ %) P𝐷/𝐸 F𝐷/𝐸 P𝐷/𝐵 F𝐷/𝐵

𝐷0 87.88 12.51 0.725 1.77 0.066 0.18
𝐷1 88.66 13.29 0.862 1.99 0.079 0.20

𝐷2 90.02 14.65 1.049 2.28 0.096 0.23

(b) Accuracy improvement by DELTA for ResNet56-ResNet8 pair on
CIFAR10. ResNet56’s accuracy on CIFAR10 is 94.37%.

Table 5: Intra-family model pairs.

the input model. The parameter size and FLOPS of DELTA also

include the corresponding values from Feature Resizing Module

and Finetuning Module.

Feature Representation Capability (Intra-family). Table 5 (a)
and Table 5 (b) show the feature representation improvement re-

flected by improved accuracy due to DELTA for VGG16-VGG8 and

ResNet56-ResNet8 pairs, respectively. For each pair, three DELTA

models 𝐷0, 𝐷1, 𝐷2 are generated by enforcing three different pa-

rameter and FLOPS constraints. By extracting less than 2.6%–4.3%

parameters from VGG16, DELTA models increase the accuracy of

VGG8 by 8.65%–9.74% which is within 0.65%–1.74% of VGG16’s

accuracy of 94.16%. Although the inclusion of DELTA adds 8.8%–

14.8% parameters and 58%–74% FLOPS when compared to the edge
(VGG8) model, the combined size and FLOPS of edge (VGG8) and
DELTA model is still 66.57%–68.32% and 62.22%–65.62% less than

those of the VGG16 model. We observe a similar trend for the

ResNet56-ResNet8 pair. The constraints for the three DELTA mod-

els are slightly relaxed considering the large accuracy gap between

ResNet56 and ResNet8.

Feature Representation Capability (Inter-family). Table 6 (a)
and Table 6 (b) show the feature representation improvement re-

flected by improved accuracy, attributed to DELTA for four model

pairs on CIFAR10 and three model pairs on ImageNet-1K, respec-

tively, for different parameter and FLOPS constraints. We observe

that by extracting less than 2.47%–32.35% parameters from base
models on CIFAR10, DELTA models increase the accuracy of edge
models by 7.61%–17.37% which is within 1.32%–4.50% of ResNet56’s

accuracy of 94.37% (the highest accuracy). The combined size and

FLOPS of edge and DELTA model is 21.29%–93.55% and 55.96%–

83.17% less than those of the base models. We observe a similar

trend for the three pairs on ImageNet-1K. In this case, however, the

constraints for the DELTA models have been relaxed considering

the large accuracy gap between the base and the edge networks.

Negative Correlation Evaluation.We calculate the correlation

score [32] between DELTA and edge model of the given model pair

to evaluate their relationship, which is computed using the samples

that are misclassified by edge model but correctly predicted by base
model. The results are shown in Table 7 for each model pair on

Model
Pair

Overall
Acc. (%)

Δ Acc.
(↑ %) P𝐷/𝐸 F𝐷/𝐸 P𝐷/𝐵 F𝐷/𝐵

ResNet56

- MobileNetV2S

89.87 7.61 0.295 1.71 0.141 0.23
93.05 10.79 0.677 2.29 0.323 0.31

VGG16

- AlexNetS

92.22 13.20 0.017 0.89 0.027 0.13
92.94 13.92 0.023 1.08 0.036 0.15

VGG16

- ResNet8

92.17 16.80 4.821 3.13 0.025 0.13
92.74 17.37 6.527 3.80 0.033 0.15

VGG16

- MobileNetV2S

92.17 9.91 1.015 2.34 0.027 0.13
92.79 10.53 1.341 2.85 0.036 0.15

(a) Accuracy improvement by DELTA for model pairs on CIFAR10.
VGG16 and ResNet56 have accuracy of 94.16% and 94.37% on CIFAR10,
respectively.

Model
Pair

Overall
Acc. (%)

Δ Acc.
(↑ %) P𝐷/𝐸 F𝐷/𝐸 P𝐷/𝐵 F𝐷/𝐵

ResNet50

- SqueezeNet

68.250 10.154 5.783 1.40 0.283 0.28
68.870 10.774 7.018 1.59 0.343 0.32

ResNet50

- ShuffleNetV2

69.018 8.366 5.193 26.90 0.278 0.28
70.040 9.488 5.719 30.55 0.306 0.32

ResNet50

- AlexNet

68.164 11.608 0.182 1.75 0.436 0.30
68.728 12.172 0.198 1.98 0.473 0.34

(b) Accuracy improvement by DELTA for model pairs on ImageNet-
1K. ResNet50’s accuracy is 76.146%.

Table 6: Inter-family model pairs.

Model
Pair

VGG16

-VGG8

VGG16

-ResNet8

VGG16

-MobileNetV2S

VGG16

-AlexNetS

ResNet56

-ResNet8

ResNet56

-MobileNetV2S

Correlation Score -0.0013 -0.0224 -0.0584 -0.0307 -0.0121 -0.0149

Table 7: Correlation score of different model pairs.

Base
Model

(Dataset)

Edge
Model

Edge
Acc. (%)

Edge +
KD

Acc. (%)

Edge +
DELTA
Acc. (%)

Δ𝐾𝐷
Acc.
(↑ %)

Δ𝐸 | |𝛿
Acc.
(↑ %)

VGG16

(CIFAR10)

VGG8 83.77 88.79 93.51 5.02 9.74
ResNet8 75.37 82.20 92.74 6.83 17.37

MobileNetV2S 82.26 88.34 92.79 6.08 10.53
AlexNetS 79.02 81.67 92.94 2.65 13.92

ResNet56

(CIFAR10)

ResNet8 75.37 82.31 90.02 6.94 14.65
MobileNetV2S 82.26 88.42 93.05 6.16 10.79

ResNet50

(ImageNet-1K)

SqueezeNet 58.096 60.646 68.870 2.550 10.774
AlexNet 56.556 60.358 68.728 3.802 12.172

Table 8: Accuracy improvement comparison between the
distilled edgemodel (Δ𝐾𝐷) and the proposedDELTA approach
(Δ𝐸 | |𝛿).

a representative dataset (CIFAR10). The negative sign denotes a

negative correlation between the edge model and DELTA, with the

correlation score magnitude reflecting the disparity in their feature

representation capabilities. Additionally, higher architectural simi-

larity between the edge model and DELTA corresponds to a lower

correlation score magnitude, indicating reduced complementarity

in their represented features.

Knowledge Distillation (KD) Comparison. We evaluate the

feature representation capability of the edge model independently

of the DELTA. To maximize the potential representation capability

of the edgemodel, we employ the basemodel as a teacher to transfer

distilled knowledge. In Table 8, knowledge distillation improves

the edge model’s accuracy by 2.55%–6.94%, while integrating the

DELTA component yields a greater improvement (9.74%–17.37%).

10

0.6 0.7 0.8 0.9 1.0
Normalized Communication Cost

76.5

77.0

77.5

78.0

78.5

Ac
cu

ra
cy

 (%
)

FedAvg Hermes FedDST FL + XDELTA

0.6 0.7 0.8 0.9 1.0
Normalized Communication Cost

77

78

Ac
cu

ra
cy

 (%
)

FedAvg Hermes FedDST FL + XDELTA

(a) Federated learning baseline perfor-
mance comparison.

0.2 0.4 0.6 0.8 1.0
Normalized GFLOPS

80

85

90

95

Ac
cu

ra
cy

 (%
)

Edge Base Opportunistic

0.2 0.4 0.6 0.8 1.0
Normalized Execution Cost

80

85

90

95

Ac
cu

ra
cy

 (%
)

Edge Base Opportunistic

(b) Opportunistic model extension
evaluation.

Figure 16: Use case experiments.

9 USE CASES

Federated Learning.XDELTA can be applied in federated learning

(FL) by strategically transmitting the DELTA and/or edge models

between client and server to achieve high accuracy and low commu-

nication cost. We select VGG16-VGG8 model pair, of which DELTA

is constructed similar to D1 in Table 5 (a). We simulate 100 clients,

each using one of four different sizes of the DELTA model, to simu-

late practical communication constraints. The simulation runs for

approximately 900 communication rounds to ensure convergence of

the aggregated model at the server. In each round, 80% of clients par-

ticipate in updating the model. To create a non-IID data distribution,

we use a subset of CIFAR100 [20], while each client is assigned data

from 3 out of 10 classes. We compare our factorization-based ap-

proach (FL+XDELTA) against FedAvg [35] and two state-of-the-art

factorization-based approaches: Hermes [23] and FedDST [4] – to

demonstrate its superiority. As shown in Figure 16 (a), our approach

achieves the highest accuracy while incurring lower communica-

tion costs during the learning process, indicating its potential as a

powerful application in federated learning.

Opportunistic Model Extension XDELTA can be used to im-

prove an edge model’s performance at runtime by using the fused

edge + DELTA model for complex inputs and relying on the edge
model alone for simpler ones. The edge model of VGG16-AlexNetS

pair shown in Table 1 exhibits weaknesses in recognizing animals

with complex features, particularly dogs, cats, deer, and birds as

identified by XDELTA over a validation dataset of 3,000 images,

split from the CIFAR10 testing dataset. During runtime, DELTA is

opportunistically invoked when the logits of the edge model for

these weak semantic classes exceed a certain threshold. As shown

in Figure 16 (b), this approach improves accuracy by more than 10%

compared to the edge model alone on the remaining 7,000 images,

while offering 4.35 times greater computational efficiency than the

base model, achieving a favorable trade-off between efficiency and

accuracy.

10 RELATEDWORK

ModelDissimilarity/Similarity Explanation.Various approaches
[7, 50, 58] of explaining single CNNmodel’s decision making behav-

ior using class activation map [7, 60] or other saliency-map based

techniques [50, 58] are proposed in literature, which lacks the capa-

bility to understand the model difference. Recent model similarity

comparison analysis studies [12, 17, 26] perform measurements

across from model functional equivalence to feature-wise distance

comparison. However, they fall short of straightforwardly explain-

ing the fine-grained concept-level details of differences between

multiple models’ decision-making process. We propose XDELTA,

which is an algorithm-agnostic tool to bring generalizable explana-

tion to model comparison.

Structured Pruning. Structured pruning methods based on prop-

erty importance [28, 56] limit model compression ratio and ac-

curacy. Adaptive importance based approaches [11, 30] require

specific design to monitor the filter importance and carefully tuned

hyperparameters. Automatic sparsity search, as presented in the

literature [27, 51], faces challenges in finding the optimal substruc-

ture due to the extensive search space and the trade-off between

searching efficiency and accuracy. Our method utilizes a more com-

pact search space to find the optimal subnetwork without special

ranking technique to achieve state-of-the-art performance.

11 DISCUSSION
XDELTA maintains its feature-wise operational property across

various tasks, including classification, regression, and tasks requir-

ing effective feature representation. Even for models with auxiliary

outputs or multiple early-exit branches, XDELTA can still effec-

tively identify deficiencies in the corresponding model branches by

constructing DELTA for each output branch. Notably, the DELTA

and edge models maintain the same level of precision, ensuring the

efficacy of the fusion process. XDELTA also demonstrates strong

generalization capability to handle shifted data distribution, as

shown in Section 7. Even when the testing dataset’s context, main

objects, and backgrounds differ significantly from those of the train-

ing dataset (MIT-Indoor-Scene in Section 6), XDELTA maintains

similar performance in explanation aspects, highlighting its robust-

ness and generalizability. In this paper, we limit the experiment

models to the CNN category based on their prevalence in recent

embedded systems literature. Exploring and exploiting differences

among Vision Transformers (ViT), Recurrent Neural Networks

(RNNs), Graph Neural Networks (GNNs), and other hybrid models

will be a valuable direction for future work.

12 CONCLUSION
This paper presents XDELTA, a differential explainable AI tool

designed to elucidate the distinctions between a lower-accuracy

edge model and a higher-accuracy base model across multiple levels

of detail. Central to this approach is the introduction of DELTA, a

neural network architecture that captures the differences between

model pairs. By augmenting the feature representation capabilities

of the edge model, DELTA enables the combined system to achieve

a feature representation on par with the base model. Utilizing the

complementarity of DELTA, XDELTA offers explanations at various

levels, ranging from high-level geometric insights to fine-grained,

human-understandable details.

13 ACKNOWLEDGEMENTS
This work was supported, in part, by grants NSF CAREER-2047461

and NIH 1R01LM013329-01.

REFERENCES
[1] Cifar10 pre-trained models. https://github.com/chenyaofo/pytorch-cifar-

models/.

[2] Fair fvcore. https://github.com/facebookresearch/fvcore.

[3] Pytorch official documentation. https://pytorch.org/.

11

[4] S. Bibikar, H. Vikalo, Z. Wang, and X. Chen. Federated dynamic sparse training:

Computing less, communicating less, yet learning better. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 6080–6088, 2022.

[5] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama. Adaptive neural networks

for efficient inference. In International Conference on Machine Learning, pages
527–536. PMLR, 2017.

[6] Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep learning with low precision

by half-wave gaussian quantization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5918–5926, 2017.

[7] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. Grad-

cam++: Generalized gradient-based visual explanations for deep convolutional

networks. In 2018 IEEE winter conference on applications of computer vision
(WACV), pages 839–847. IEEE, 2018.

[8] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey. Cinic-10 is not

imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.
[9] X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding. Resrep: Lossless

cnn pruning via decoupling remembering and forgetting. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4510–4520, 2021.

[10] G. Fang. Torch-Pruning. https://github.com/vainf/torch-pruning/.

[11] K. Gu, S. Vosoughi, and T. Prioleau. Feature selection for multivariate time series

via network pruning. In 2021 International Conference on Data Mining Workshops
(ICDMW), pages 1017–1024. IEEE, 2021.

[12] P. Guo, B. Hu, and W. Hu. Sommelier: Curating dnn models for the masses. In

Proceedings of the 2022 International Conference on Management of Data, pages
1876–1890, 2022.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[14] A. G. Howard. Mobilenets: Efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861, 2017.
[15] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

[16] F. N. Iandola. Squeezenet: Alexnet-level accuracy with 50x fewer parameters

and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.
[17] H. Jia, H. Chen, J. Guan, A. S. Shamsabadi, and N. Papernot. A zest of lime:

Towards architecture-independent model distances. In International Conference
on Learning Representations, 2021.

[18] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network

representations revisited. In International conference on machine learning, pages
3519–3529. PMLR, 2019.

[19] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better? In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 2661–2671, 2019.

[20] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny

images. 2009.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing
systems, 25, 2012.

[22] D. H. Le, T.-N. Vo, and N. Thoai. Paying more attention to snapshots of iterative

pruning: Improving model compression via ensemble distillation. arXiv preprint
arXiv:2006.11487, 2020.

[23] A. Li, J. Sun, P. Li, Y. Pu, H. Li, and Y. Chen. Hermes: an efficient federated

learning framework for heterogeneous mobile clients. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking, pages
420–437, 2021.

[24] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for

efficient convnets. arXiv preprint arXiv:1608.08710, 2016.
[25] Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, and L. Van Gool. Revisiting

random channel pruning for neural network compression. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 191–201,
2022.

[26] Y. Li, Z. Zhang, B. Liu, Z. Yang, and Y. Liu. Modeldiff: Testing-based dnn similarity

comparison for model reuse detection. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 139–151, 2021.

[27] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian. Channel pruning via

automatic structure search. arXiv preprint arXiv:2001.08565, 2020.
[28] R. Lin, J. Ran, D. Wang, K. H. Chiu, and N. Wong. Ezcrop: Energy-zoned channels

for robust output pruning. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 19–28, 2022.

[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[30] X. Liu, J. Cao, H. Yao, W. Sun, and Y. Zhang. Adapruner: Adaptive channel

pruning and effective weights inheritance. arXiv preprint arXiv:2109.06397, 2021.
[31] Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural networks,

12(10):1399–1404, 1999.

[32] Y. Liu and X. Yao. Simultaneous training of negatively correlated neural networks

in an ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 29(6):716–725, 1999.

[33] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for

efficient cnn architecture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018.

[34] J. Mao, H. Yang, A. Li, H. Li, and Y. Chen. Tprune: Efficient transformer pruning

for mobile devices. ACM Transactions on Cyber-Physical Systems, 5(3):1–22, 2021.
[35] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.

Communication-efficient learning of deep networks from decentralized data. In

Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[36] R. Mishra and H. Gupta. Transforming large-size to lightweight deep neural

networks for iot applications. ACM Computing Surveys, 55(11):1–35, 2023.
[37] M. Monjur, Y. Luo, Z. Wang, and S. Nirjon. Soundsieve: Seconds-long audio

event recognition on intermittently-powered systems. In Proceedings of the 21st
Annual International Conference on Mobile Systems, Applications and Services,
pages 28–41, 2023.

[38] R. Müller, S. Kornblith, and G. E. Hinton. When does label smoothing help?

Advances in neural information processing systems, 32, 2019.
[39] C. O’neil. Weapons of math destruction: How big data increases inequality and

threatens democracy. Crown, 2017.
[40] R. G. Pacheco, K. Bochie, M. S. Gilbert, R. S. Couto, and M. E. M. Campista.

Towards edge computing using early-exit convolutional neural networks. Infor-
mation, 12(10):431, 2021.

[41] C. Profentzas, M. Almgren, and O. Landsiedel. Microtl: Transfer learning on

low-power iot devices. In 2022 IEEE 47th Conference on Local Computer Networks
(LCN), pages 1–8. IEEE, 2022.

[42] A. Quattoni and A. Torralba. Recognizing indoor scenes. In 2009 IEEE conference
on computer vision and pattern recognition, pages 413–420. IEEE, 2009.

[43] J. O. Ramsay, J. ten Berge, and G. P. Styan. Matrix correlation. Psychometrika,
49(3):403–423, 1984.

[44] H. Ren, D. Anicic, and T. A. Runkler. Tinyol: Tinyml with online-learning

on microcontrollers. In 2021 international joint conference on neural networks
(IJCNN), pages 1–8. IEEE, 2021.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition

challenge. International journal of computer vision, 115:211–252, 2015.
[46] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2:

Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[47] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-

cam: Visual explanations from deep networks via gradient-based localization. In

Proceedings of the IEEE international conference on computer vision, pages 618–626,
2017.

[48] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.
[49] B. A. Skourt, A. El Hassani, and A. Majda. Lung ct image segmentation using

deep neural networks. Procedia Computer Science, 127:109–113, 2018.
[50] S. Srinivas and F. Fleuret. Full-gradient representation for neural network visu-

alization. Advances in neural information processing systems, 32, 2019.
[51] Q. Sun, S. Cao, and Z. Chen. Filter pruning via automatic pruning rate search. In

Proceedings of the Asian Conference on Computer Vision, pages 4293–4309, 2022.
[52] M. Tan. Efficientnet: Rethinking model scaling for convolutional neural networks.

arXiv preprint arXiv:1905.11946, 2019.
[53] M. Vijaymeena and K. Kavitha. A survey on similarity measures in text mining.

Machine Learning and Applications: An International Journal, 3(2):19–28, 2016.
[54] W. Wang, Y. Yang, X. Wang, W. Wang, and J. Li. Development of convolutional

neural network and its application in image classification: a survey. Optical
Engineering, 58(4):040901–040901, 2019.

[55] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in

deep neural networks. Advances in neural information processing systems, 29,
2016.

[56] S. Yu, Z. Yao, A. Gholami, Z. Dong, S. Kim, M. W. Mahoney, and K. Keutzer.

Hessian-aware pruning and optimal neural implant. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3880–
3891, 2022.

[57] Y. Yuan, M. Chao, and Y.-C. Lo. Automatic skin lesion segmentation using deep

fully convolutional networks with jaccard distance. IEEE transactions on medical
imaging, 36(9):1876–1886, 2017.

[58] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-

works. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer, 2014.

[59] S. Zhong, G. Zhang, N. Huang, and S. Xu. Revisit kernel pruning with lot-

tery regulated grouped convolutions. In International Conference on Learning
Representations, 2022.

[60] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep

features for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929, 2016.

12

	Abstract
	1 Introduction
	2 Motivation
	3 Overview of XDELTA
	3.1 DELTA Network Construction
	3.2 Differential Explainable AI

	4 Delta Network Construction
	4.1 Overview
	4.2 Step 1 – Structured Subgraph Extraction
	4.3 Step 2 – Constructing DELTA Feature
	4.4 Step 3 – Training DELTA Network

	5 Differential Explainable AI
	6 Dataset-Driven Evaluation
	7 Deployment Experiment
	8 Component Analysis and Ablation Studies
	8.1 Experimental Setup
	8.2 Compactness of DELTA
	8.3 Complementary Capability of DELTA

	9 Use Cases
	10 Related Work
	11 Discussion
	12 Conclusion
	13 Acknowledgements
	References

