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ABSTRACT
Estimating the facing direction of a speaker holds immense signifi-
cance, from improving user experiences in smart homes through
seamless interaction with IoT devices to delivering targeted re-
sponses by enabling spatial awareness. This capability is key in
advancing natural communication technologies. Recent studies
have introduced audio-based techniques that estimate which IoT
device a speaker is addressing, utilizing the non-uniform radia-
tion pattern of speech signals. However, these methods typically
require a distributed system with multiple microphone arrays to
perform effectively and pose scalability challenges. In this paper, we
introduce VoiceDirect, a pioneering system capable of accurately
determining a user’s speaking direction from any location within a
room. VoiceDirect employs a standalone smart hub, outfitted with
a mmWave radar and a co-located microphone array. The benefits
of utilizing the complementary nature of acoustic and mmWave
signals are manifold. Firstly, the audio signal aids the mmWave
radar in precisely estimating the location of a speaker among mul-
tiple humans present in a room. Secondly, this precise location of
the speaker aids in normalizing and preprocessing both audio and
mmWave signal. Finally, the point cloud of the speaker extracted
from mmWave provides an estimation of the speaker’s upper body
pose, which in turn helps in estimating the head orientation from
the speech radiation pattern, even in the presence of noise and
multipath effects. Thus, VoiceDirect integrates information from
both the acoustic radiation pattern and mmWave-generated body
pose, inferring the speaking direction with exceptional accuracy.
Our dataset, collected from extensive real-world experiments in-
volving over 6, 000 voice commands by 8 speakers in 6 distinct
environments, shows that VoiceDirect achieves a median error as
low as 19◦, significantly outperforming existing systems.
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1 INTRODUCTION
Voice communication significantly enhances the user experience
with smart devices by enabling natural, hands-free interaction for
tasks, information retrieval, and control. It streamlines multitasking
and task execution efficiently in our daily lives. Personalization
is fostered through voice recognition and emotional connections,
reducing cognitive load by eliminating the need for specific com-
mands. Context-awareness maintains meaningful conversations

and simplifies complex tasks, promoting safety through distraction-
free engagement, and bridging language barriers with translation
features. Voice assistants continually improve accuracy and re-
sponsiveness through user interactions, ultimately revolutionizing
interaction with smart devices by offering an intuitive, personalized,
and efficient interface that caters to diverse needs and contexts.

Figure 1: We envision a future where we will interact with
smart devices by facing or looking at them and speaking to
their direction. A single smart hub device having on-board au-
dio and mmWave sensing capability will facilitate the device
arbitration by estimating the user’s direction of speaking.

Unfortunately, voice communication with smart devices poses a
practical challenge in scenarios where multiple smart devices are
present in our surroundings, requiring us to recall each device’s
name or identifier for interaction. For instance, envision a living
room furnished with two smart blinds on its windows. In this sce-
nario, a user cannot simply issue a command such as, "Alexa/Okay
Google, lower the blind," to control each blind individually. Instead,
they must assign distinct names to the blinds and issue a command
like, "Alexa/Okay Google, lower the blind [identifier or name]." This
approach swiftly becomes unscalable as the number of smart de-
vices increases. Given that many of us struggle with remembering
people’s names, the prospect of recalling names or identifiers for
dozens of IoT devices in every indoor space where we reside or
work quickly transforms into a nightmare.

A more instinctive approach to interacting with smart devices,
one that minimizes cognitive load, involves facing or looking at
the device and speaking directly to it. This mirrors social situations
where eye contact is established to signify our intended conversa-
tion partner in a group setting. Recent literature [6, 27, 31] has ex-
plored this approach with some degree of success, albeit frequently
accompanied by impractical assumptions, unrealistic experimental
settings, and/or large estimation errors. Fundamentally, these meth-
ods leverage the non-uniform radiation pattern of high-frequency
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components in speech to infer a user’s speaking direction. Due to
acoustic multipaths and inaccurate distance estimation capability
using audio signals, these methods perform poorly when estimat-
ing the speaking direction, e.g., [31] reports an average estimation
error of 570, and [6] fails to distinguish two sources that are less
than 450 apart.

The work by Romit et al. [27] surpasses prior solutions through
the introduction of a distributed microphone array-based approach.
This approach includes two to six 4-channel or 6-channel micro-
phone arrays designed to estimate line-of-sight power, subsequently
determining the speaking direction with an average error of ap-
proximately 8◦-37◦. However, their solution involves equipping
even the most basic smart devices, such as light bulbs, faucets, and
locks, with multi-channel microphone arrays, which is not only
cost-prohibitive but also intrusive. Furthermore, the system solves
the speaking direction estimation problem in a more constraint
setting where the user is looking directly at one of the devices that
is also receiving the speech signal, and hence, the whole solution
boils down to a 𝑁 -class classification problem where 𝑁 is the num-
ber of smart devices/ microphone arrays present in the room. As
a result, developing a system comprising a standalone smart hub
capable of accurately estimating a user’s speaking direction from
any location within a room remains an open problem.

To solve this problem, we introduce VoiceDirect, which employs
a multi-modal fusion approach for accurate estimation of a user’s
speaking direction using a combination of a microphone array and
a co-located mmWave radar on a smart hub device. The use of the
mmWave radar in VoiceDirect is motivated by an in-depth empirical
experiment where we systematically study the limitations of single-
point audio-only speaking direction estimation techniques:

• First, we observe that estimating speaking directions is extremely
challenging without knowledge of the user’s location relative to
the smart hub. Variations in speech intensity and multi-paths
contribute to this complexity.

• Second, we demonstrate that if we know the user’s precise loca-
tion, line-of-sight signals from the speaker can be extracted and
normalized to account for multi-paths and relative distance to
obtain a better estimation of the speaking angle. However, there
is significant room for improvement in estimation accuracy.

• Finally, we demonstrate that the impreciseness of single-point,
audio-only location estimation results in significantly poor re-
sults in speaking direction estimation.

Based on these observations, we conclude that an additional
sensing modality, such as an mmWave radar co-located with the
microphone array, is necessary. A mmWave radar not only pro-
vides fast and accurate user localization but also helps improve the
overall accuracy of the user’s head and upper body pose estimation
while being as minimally privacy-invasive as possible compared to
cameras.

The fusion of acoustic and mmWave signals in VoiceDirect is in-
spired by how humans perceive an intended communication request
using audio-visual cues. Typically, when someone hears their name
being called, they use the sound to roughly locate where the other
person (the caller) is situated. They then orient their head, face,
and upper body in that approximate direction to accurately locate
the caller using gaze. Finally, they focus their senses to concentrate

and suppress noise from other directions. Likewise, in VoiceDirect,
the smart hub follows a three-phase process to estimate the user’s
speaking direction:
• First, a preamble of the audio signals is used to roughly estimate

the speaker’s location. The mmWave radar, which by itself can-
not detect who is speaking, utilizes the approximate location
to perform beamforming, obtaining a high-precision relative
location (distance and direction) of the speaker.

• Second, both the audio and mmWave radar signal streams are
filtered to suppress signals from non-line-of-sight directions,
and the signals are normalized to compensate for the effect of
distance.

• Third, spatial, temporal, and frequency-domain neural features
are extracted from mmWave and acoustic streams, and a cross-
modal attention network is employed to accurately estimate the
user’s speaking direction.

Here, the speaking direction refers to the speaker’s head orienta-
tion, which can have a slight offset from the speaker’s upper body
orientation. While we primarily rely on the normalized and filtered
speech radiation pattern for precise speaking direction estimation,
integrating the point cloud from mmWave with the audio signal
in the final phase helps to reduce estimation errors caused by high
levels of noise and multipath effects. Furthermore, the integration
of mmWave also allows to do self-supervised calibration in unseen
environment which is greatly beneficial in real-world scenarios.

We have implemented VoiceDirect using a commercially-available
off-the-shelf 76GHz-81GHz mmWave radar (TI AWR1843) and a
4-channel microphone array (ReSpeaker V2) to ensure the repro-
ducibility of our results and the widespread adoption of the system.
The integration of the TI AWR1843 (retail price $299) into a smart
hub increases the cost of the system, but it significantly enhances
the sensing capabilities of the system. These enhancements are also
beneficial for other radar-enabled smart home services, such as
improved audio signal processing and better understanding of user
and environmental context. Furthermore, the extra computational
capabilities of the AWR1843 evaluation board contributes mostly to
the high retail price since the antenna-on-package (AWR 1843AOP)
costs only $26, which is expected to decrease even further when
produced at scale. For computation, we use a HP Linux computer
with 8 GB memory. After the full signal is captured, the processing
time of the system including data pre-processing for both modality
and DNN inference is 1.2 seconds for each utterance.

To assess the performance of VoiceDirect, we collect an audio-
mmWave multimodal dataset through real-world experiments in-
volving over 6, 000 voice commands issued by 8 users across 6
different rooms. As baselines for comparison, we employ single-
device, 2-device, and 3-device microphone array-only systems for
user localization and speaking direction estimation, following the
algorithm outlined in [27]. Our findings indicate that VoiceDirect
exhibits a median speaking direction estimation error of 19◦ across
all users and indoor environments. This marks an improvement of
43◦, 33◦, and 16◦ over the respective single-device, 2-device, and 3-
device audio-only baselines. We also conduct a real-time evaluation
of VoiceDirect by depicting scenarios pertaining to device arbitra-
tion, which demonstrates that VoiceDirect successfully identifies
the smart device in 80% of instances across all scenarios.
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2 PRELIMINARY STUDY
We conduct an experiment to understand the limitation of single-
point, audio-only solutions to a user’s speaking direction estimation
problem.

2.1 System Model Geometry
The system model consists of three entities – a smart hub, one
or more human speakers, and multiple IoT devices. A minimal
scenario is depicted in Figure 2 where a human speaker issues a
voice command to an IoT device while looking at it. The IoT device
does not have speech recognition capability. The smart hub listens
to user’s commands and controls the IoT device accordingly.

The geometry of the scenario is described using three parameters
(𝑟, 𝜃, 𝜙). The speaker’s location with respect to the smart hub is
described by the distance 𝑟 and angle 𝜃 . The facing or speaking
direction is denoted by the angle 𝜙 . Both the smart hub and the
IoT device are stationary. The human speaker is free to issue voice
commands from any location.

IoT 
Device

Smart
Hub

Human
Speaker

Figure 2: The geometry of the system model.

Although the model above is a 2D planer representation of a
3D real-world scenario, this is sufficient for most use cases since
the user’s location estimate is refined by using an average human
height and we assume that no two IoT devices are placed at the
same facing angle 𝜙 .

2.2 Testbed
We set up a testbed for multi-channel audio data collection in a
30×20 square feet indoor living room that contains typical furniture
such as couches, tables, a computer desk, chairs, and cabinets. The
interior walls are made of standard drywall panels, while the floor is
wood, with a portion of the study area covered by a large carpet. A
four-channel, far-field microphone array (ReSpeaker [4]) is placed
on a 3-feet-high table surface, approximately 2 feet away from one
wall. This setup provides an experimental area covering 0 < 𝑟 < 16
feet and 0 < 𝜃 < 180 degrees, ensuring adequate room coverage
for accurate data collection.

We identify and mark 16 fixed locations in the experiment area.
Four volunteers (one person at a time) stand at each of these fixed lo-
cations and issue 7 voice commands while facing 7 different objects
in the room. This process ensures comprehensive data coverage
across multiple facing angles. In total, we collect over 600 utter-
ances, spanning a wide range of facing angles, from 0 < 𝜙 < 360
degrees, providing a robust dataset for our analysis.

IoT Device

Smart Hub

Speaker

Figure 3: Testbed data collection setup.

2.3 Speaking Direction Estimation
A fundamental property of speech signals is that their radiation
pattern is not omnidirectional for all frequencies. While the lower
frequency components of human speech are omnidirectional, the
higher frequency components are emitted with maximum energy
in the direction the speaker is facing. In Figure 4, we illustrate
two speech radiation patterns for a speaker facing two different
directions, where different colors represent different frequencies.
By leveraging this asymmetry, we can design an algorithm that
learns to recognize the radiation pattern of the received signals at
the smart hub to infer the user’s speaking direction. This approach
allows us to capture the natural directional bias of speech and utilize
it for speaking direction estimation.

Figure 4: Radiation pattern of human speech [27].

As our initial approach, we implement a deep convolutional neu-
ral network (CNN) that takes a 3–5 second utterance as input and
infers the speaker’s direction as output. The CNN architecture is
composed of 6 convolutional layers for feature extraction, followed
by 3 fully connected layers that map the extracted features to the
final output. We employ a contrastive loss function, which encour-
ages the model to position two utterances with the same speaking
angle close to each other in the embedding space, while utterances
with different speaking angles are pushed farther apart. This setup
enhances the network’s ability to distinguish subtle variations in
speech radiation patterns associated with different speaking direc-
tions. While the CNN performs regression to predict a continuous
set of angles, we discretize the output into 8 distinct angle classes
post-DNN execution to simplify the classification task. For evalua-
tion, we divide the collected dataset, using 80% for training and the
remaining 20% for testing, enabling us to assess the accuracy and
generalization capability of the classifier across unseen data.

Figure 5(a) shows the t-SNE plot of feature embedding in two
dimensions. We observe that the feature embedding for different
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Figure 5: Location-unaware speaking direction estimator’s
ability to distinguish speaking angle 𝜙 is poor.

speaking angles are not very separable. This happens because even
though the speaker may face different directions while speaking,
due to their location and intensity of speaking, utterances from
different speaking directions are mapped to neighboring points on
the embedding space. For example, a speaker speaking towards the
smart hub from far and a speaker speaking away from the smart
hub from near are often confusing to the classifier as the two utter-
ances have similar intensity and the subtle difference among the
spectral components across different frequencies become difficult
to distinguish. Figure 5(b) shows the corresponding confusion ma-
trix. Overall, a location-unaware, single-point, audio-only approach
results in an average speaking direction estimation error of 62◦,
confirming similar recent studies [31], which is not sufficient for
IoT device arbitration.

2.4 Speaking Direction Estimation with Known
User Location

Since we have ground truth user locations in our dataset, we con-
ducted an additional experiment where the speaker’s location infor-
mation, represented as (𝑟, 𝜃 )—the distance and angular position—is
used as prior knowledge alongside the utterances to improve the
estimation of the speaking direction 𝜙 . By incorporating this spa-
tial information, we enhance the model’s ability to contextualize
the audio data. To reduce the effect of distance on the received
signals, we normalize them with respect to 𝑟 . Additionally, to min-
imize the impact of multipath interference and non-line-of-sight
(NLOS) signals, which can degrade the signal quality, we apply
a delay-sum beamforming algorithm [20], which focuses on ex-
tracting line-of-sight (LOS) signals from the speaker. After these
preprocessing steps, the normalized and beamformed signals, along
with the speaker’s location data, are fed into a six-layer CNN with
16 convolutional filters that are designed to capture both spatial and
frequency-domain features. The network is followed by three fully
connected layers, which process the extracted features for the final
speaking direction estimation. Similar to the earlier experiment, we
utilize a contrastive loss function to ensure that utterances with
similar speaking directions are closely aligned in the embedding
space, while those from different directions are spaced farther apart.
We use 80% of the dataset for training and reserve 20% for test-
ing, allowing us to assess the improvement in speaking direction
estimation when the speaker’s location is incorporated as prior
knowledge.

Figure 6(a) shows the t-SNE plot of feature embedding in two
dimensions. We observe that the feature embedding for different
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Figure 6: Location-aware speaking direction estimator’s abil-
ity to distinguish speaking angle 𝜙 is better.

speaking angles are more separable than the location-unaware
setting. Figure 6(b) shows the corresponding confusion matrix.
Overall, a location-aware, single-point, audio-only approach results
in an average speaking direction estimation error of 27◦, which is
better than location-unaware algorithms, but there are still room
for improvement.

2.5 Speaking Direction Estimation with
Estimated User Location

Knowing the user’s location (𝑟, 𝜃 ) improves the accuracy of user’s
speaking direction 𝜙 estimation. Estimating the location itself, how-
ever, is still a challenge. Specifically, audio-based localization so-
lutions are susceptible to environmental factors such as noise and
reverberation. State-of-the-art solutions that use a single micro-
phone array report meter-level resolution in distance estimation.
Such large error margins is practically useless in speaking direction
estimation given that even the perfect knowledge of the user’s loca-
tion cannot entirely solve the problem. Yet, for completeness of this
study, we repeat the location-aware speaking direction estimation
experiment with the modification that the user’s location (𝑟, 𝜃 ) is
estimated from the audio signals.
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Figure 7: Speaking direction estimator’s ability to distinguish
speaking angle 𝜙 degrades rapidly when we use estimated
location from audio.

Figure 7 shows that when we estimate the user’s location using
the four-channel audio and use that information to estimate speak-
ing direction, the separability of the classes drastically reduces.
This happens due to the location estimation error which is 1.1m on
average for distance and 19 degrees for angle of arrival. While this
error can be reduced by using multiple microphone arrays, such
solutions would require multiple smart hubs in the room, which
goes against our assumption that each room has a single smart hub.
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Figure 8: Overview of VoiceDirect.

3 OVERVIEW OF VOICEDIRECT
VoiceDirect combines the complementary nature of acoustic and
mmWave signals to accurately infer a user’s speaking direction
in indoor environments which is otherwise difficult to achieve by
using either of the individual signal modalities alone. It is a single-
device, software-only solution that uses commercially available
off-the-shelf microphone arrays and mmWave radar modules, and
neither requires multiple coordinated sensors nor anymodifications
to off-the-shelf mmWave radars and microphone arrays. VoiceDi-
rect is agnostic to the indoor environment and human voice, and
its fusion network is generalizable beyond the device arbitration
problem and can inspire future radar and audio fusion systems for
detecting complex, long-term patterns in the indoor environment.

While designing VoiceDirect, we considered several different
approaches. One option was to train an end-to-end deep neural
network (DNN) to estimate the facing direction directly from raw
mmWave and audio signals. However, this approach would require
extensive training data for effective generalization due to the spar-
sity and limited speaker information present in mmWave signals.
Therefore, preprocessing steps are crucial to extract meaningful pat-
terns before training. Additionally, single-modality approaches, like
mmWave-based mesh generation algorithms ([28, 29]), can estimate
body pose and orientation but are incapable of determining head
orientation. To overcome these limitations, we designed VoiceDi-
rect in multiple stages, leveraging the complementary strengths
of both audio and mmWave signals. Figure 8 illustrates the three
phases of VoiceDirect’s end-to-end operation: speaker localization,
signal filtering and processing, and speaking direction estimation.
Each of these phases is briefly described in this section.

3.1 Phase 1 – Speaker Localization
Since single-point, audio-only indoor localization solutions are
inaccurate, VoiceDirect employs a two-step process to estimate the
speaker’s location.
Audio-Based DoA Estimation: VoiceDirect uses a preamble of
the audio signals (e.g., the wake-word “Alexa" or “OK Google")
captured by the microphone array to estimate the direction and
arrival (DoA) of audio, which provides an approximate angle 𝜃 of
the user’s location.

mmWave-Based Localization: VoiceDirect processes the raw
mmWave signals through a series of signal processing steps to
obtain a set of point clouds, one of which contains the speaker. The
approximate angle of the user’s location is used to select the point
cloud that corresponds to the speaker and the centroid of the point
cloud is used to compute the exact location (𝑟, 𝜃 ) of the speaker.

3.2 Phase 2 – Signal Filtering and Processing
Audio and mmWave signals are conditioned to compensate for
multi-paths and relative distance, and to prepare them for the next
phase.
Audio Signal Processing: The speaker’s location information is
used to filter out unwanted sounds by beamforming [20] at the
microphone array towards the line-of-sight direction between the
user and the smart hub. The power of the line-of-sight signal is
extracted and normalized by the square of the user’s distance to
compensate for the relative distance between the user and the smart
hub.
mmWave Signal Processing:ThemmWave-generated point cloud
corresponding to the speaker is tracked and updated throughout the
duration of the speech command. A time-sequence of point clouds
where each point is represented by its 3D coordinates, velocity, and
intensity of reflected signals is prepared for the next phases.

3.3 Phase 3 – Speaking Direction Estimation
A multi-modal sensor fusion network is used to estimate the user’s
speaking direction, which has a two-part operation:
mmWave and Acoustic Feature Extraction: mmWave point
clouds go through a hierarchical feature extraction network that
extracts features from individual points, spatial features from the
cluster of points on a point cloud, and temporal features from a
sequence of point clouds. Acoustic features are extracted by a deep
convolutional network.
Multi-Modal Fusion Network: mmWave and acoustic features
are fed to a network which consists of a CNN-based feature encoder,
followed by a multi-modal attention-based fusion module, followed
by a classification module to estimate the user’s speaking direction.
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4 SPEAKER LOCALIZATION
The goal of this phase is to estimate the speaker’s location using
acoustic and mmWave signals. It begins with the wake-word, where
acoustic analysis provides a rough angular position, which is then
refined by the mmWave-based algorithm for precise localization.

4.1 Audio-Based DoA Estimation
Numerous solutions have been proposed in the literature to esti-
mate the direction of arrival (DoA) of acoustic signals that include
time difference of arrival (TDoA)-based methods [12], energy-based
strategies [22], and more recently, approaches rooted in deep neural
networks (DNNs) [5, 10, 25]. Because of their superior performance,
VoiceDirect employs a deep learning-based technique.
DoA Estimation Basics: The principle behind acoustic DoA es-
timation is that depending on the angular position of the source,
consecutive microphones on the array receive the same signal but
with different delays. Since the position of the microphones are
fixed, these delays directly map to the DoA. In practical acoustic en-
vironments where noise and reverberation is common, the mapping
is often done by data-driven learning approaches.
DoA Estimation in VoiceDirect: VoiceDirect employs a method
that involves the computation of the Generalized Cross-Correlation
Phase Transform (GCC-PHAT [13]) across pairs of microphone
channels. It removes the effect of magnitude from each signal so
that a speech does not get ignored in the presence of large noise of
reflection.We use the GCC-PHAT of the first 0.5s of the audio signal,
starting from the wakeword, as input to a convolutional neural
network to estimate the DoA. We use a standard 4 convolution
layers followed by 2 GRU layers for DoA estimation.

4.2 mmWave-Based Localization
The initial DoA estimation provides VoiceDirect with a reference
search area, which the mmWave radar module uses to precisely
locate the user. This is crucial for distinguishing a stationary speaker
among a group of moving or stationary individuals. The steps for
accurately localizing the speaker are as follows:
Step 1 – VoiceDirect initiates a sequence of pre-processing opera-
tions on the rawmmWave I-Q signals. First, 1-D FFT is performed to
extract the range bins from the complex signals. Second, a Doppler-
FFT is performed along the chirp dimension. Third, a cell averaging
Constant False Alarm Rate (CFAR) [21] technique across both the
range and Doppler dimensions is applied to compute a threshold,
which is applied on the FFT outputs to identify points with high
Signal-to-Noise Ratios (SNR). A notably low threshold is used to
specifically mitigate the influence of stationary clutter and noise.
Step 2 – VoiceDirect conducts an azimuthal scan in the range of
[−90◦, 90◦] with 1◦ resolution beamforming. Employing Minimum
Variance Distortionless Response (MVDR) [24] beamforming, we
calculate the Angle of Arrival (AoA) for objects in each 100ms signal
(one frame), creating an AoA spectrum. Elevation data is derived
from signals at elevation antennas. We then use a threshold to
identify the strongest reflections across range and azimuth angles.
Step 3 – After calculating the azimuth and elevation angles for
the strongest reflections, we gather these points for each frame

during the voice command. VoiceDirect then uses the DB-SCAN [9]
density-based clustering algorithm to group dense data points and
discard low-density clusters. We compute the centroids of these
clusters and apply a threshold to exclude those with too few points,
typically representing static objects like walls and furniture. The
final step involves selecting the cluster whose centroid aligns with
the audio-based DoA estimate within a specified tolerance range.

5 SIGNAL FILTERING AND PROCESSING
The goal of this phase is to effectively filter the signals within both
modalities to preserve only those signals that are directly relevant
to the speaker’s activity.

5.1 Audio Signal Processing

Step 1 – Delay and Sum Beamforming: Using the user’s angular
position 𝜃 , we perform acoustic beamforming to minimize noise
and multi-path reflections. This is achieved through the delay and
sum beamforming technique [20], which calculates the time delay
Δ𝑖 for each microphone based on 𝜃 and microphone array geometry
by using the following equation:

x =
∑︁

i
xi (t − ∆i) (1)

This method aligns and enhances coherent speech signals while
suppressing incoherent noise and multi-paths across the array by
summing the time-adjusted signals.
Step 2 – Line-of-Sight Power Estimation: From the line-of-sight
acoustic signals, we compute the line-of-sight power by performing
FFT and taking the square of the amplitude. This is further multi-
plied by the square of the user’s distance to normalize the effect of
distance on signal power: PLoS

norm = A2 × r2. Here,𝐴 is the amplitude
of the signal and 𝑟 is the user’s distance. The normalization oper-
ation ensures that the line-of-sight power is scaled in accordance
with the user’s distance, which helps estimating the true radiation
pattern of the speech.
Step 3 – Feature Extraction: To form the audio channel input
to the neural network that is used in the next phase of VoiceDi-
rect, along with the line-of-sight power, we include the received
signal power from all microphones in order to compensate for any
inaccuracies in line-of-sight power estimation that we may incur
in a practical system. Thus we generate a feature vector having
𝑇 × 𝐹 × (𝑀 + 1) × 2 dimensions, where𝑀 represents the number of
microphones, 𝑇 and 𝐹 represent the time and frequency bins, and
the factor of 2 is due to the inclusion of both phase and amplitude.

5.2 mmWave Signal Processing
To create the mmWave channel input for the neural network in
the next phase of VoiceDirect, we take the 3D coordinates, velocity,
and signal power of the reflected points at each frame. The neural
network, detailed in the following section, processes these time-
sequenced point clouds to discern patterns and relationships. This
helps it learn representations of the speaker’s body orientation and
pose, aiming to accurately estimate the user’s speaking direction.
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Figure 9: Deep Neural Network Overview

6 SPEAKING DIRECTION ESTIMATION
The goal of this phase is to apply a multi-modal deep neural net-
work (DNN) on the processed audio and mmWave signals from the
previous phase to estimate the speaking direction. Figure 9 shows
the architecture of the DNN which is organized into three key com-
ponents: (a) a mmWave radar feature extractor; (b) an audio feature
extractor; and (c) a multi-modal attention module.

6.1 mmWave Radar Feature Extractor
In VoiceDirect, each mmWave radar frame (captured at 10 fps) is
processed at a time to compute a point cloud. To make the frame
size consistent, a predetermined number of 20 3D points is used
to represent each point cloud. In instances where the number of
points in a particular frame is lower than 20, padding with zero is
employed for the remaining slots. A sequence of 5 consecutive point
clouds or frames is used to extract the mmWave features. Thus, the
input vector has the size of 𝐵 ×𝑇 × 𝑁 × 5, where 𝐵 represents the
batch size, 𝑇 indicates the number of frames, and 𝑁 signifies the
quantity of 3D points within each frame.
Point Feature Extraction: This module processes the feature
vectors associated with each 3D point. The feature vector contains
the x, y, and z coordinates of individual 3D point, alongside their
Doppler velocity and reflected signal power.

Each point within a frame undergoes processing via two separate
multi-layer perceptrons (MLP). Notably, these MLPs possess shared
weights, signifying that the same MLP layer is applied across all
3D points. If we designate the input vectors as 𝑥𝑡

𝑖
, where 𝑖 ∈ [1, 𝑁 ]

denotes the point index within each frame, and 𝑡 ∈ [1,𝑇 ] indicates
the frame index, the outcome of the shared MLPs is an output
feature vector, 𝑓 , as represented by the equation:

f t
i = MLP(xt

i ;𝜔) (2)

Here, the symbol 𝜔 represents the weight parameters associated
with the MLP layers.

Spatial-Domain AttentionModule: In order to estimate the body
orientation and shape information of the speaker from the point
cloud, the internal structure and the relationship among the points
on a point cloud are learnt. To aggregate the point feature vectors
at each frame, we employ a multi-head attention [26] module.

The attention mechanism is integral to the functioning of the
model as they increase the network’s ability to focus on relevant
aspects of the point cloud and establish meaningful spatial rela-
tionship among various points. In VoiceDirect, we implement a
multi-headed attention [7] module featuring 32 attention heads.
This mechanism comprises three dense layers that compute the key,
query, and value components from the feature vectors extracted
from the point cloud. During the computation of attention scores,
we apply a mask that identifies the 3D points present in a frame and
distinguishes them from the zero-padded ones. The output from all
the attention heads are concatenated and linearly transformed to
form the final output.
Time-Domain Attention Module: Once the spatial-domain fea-
tures capturing the inherent local structure within the point cloud
is extracted, we apply a dilated convolutional neural network to
convolve across both the time- and the point cloud feature dimen-
sions. Another instance of a masked multi-headed self attention
module is used to aggregate information across all frames. This
radar feature vector is then fused with the audio feature vector for
speaking direction estimation.

6.2 Audio Feature Extractor

CNN Operation: The filtered and processed acoustic signals pro-
duced in the previous phases that contains acoustic signals relevant
to only the speaker is passed through a CNN consisting of seven
convolutional layers and subsequent max pooling operations.
Multi-Headed Attention: The feature vector after convolution is
fed into a multi-headed attention module to capture the intricate
relationships within the acoustic signals. Specifically, the attention
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scores are computed in the frequency domain since the most in-
formative feature to extract from speech (for speaking direction
estimation) is the relationship among intensities at different fre-
quency levels.

6.3 Multi-Modal Fusion Network
After extracting feature vectors from both mmWave radar and au-
dio modalities, VoiceDirect integrates them using a cross-modal
attention module. This begins with linear layers computing keys
(𝐾 ) and queries (𝑄) for each modality. Cross-modal attention scores
are then computed for the radar, using the radar-derived key and
audio’s query and value. The process is mirrored for the audio
modality, inverting the key, query, and values. The outcomes are
concatenated and fed to another linear layer for estimating the
user’s speaking direction. This multimodal fusion step combines
insights from mmWave point cloud, which primarily offers infor-
mation about the user’s upper body pose, with audio signals that
capture additional head orientation relative to the upper body.

6.4 Self-Supervised Calibration
mmWave radar signals are highly susceptible to noise and envi-
ronmental interference, while speech radiation patterns can vary
significantly between individuals, introducing further challenges
for accurate speaker localization and direction estimation. To ad-
dress these challenges, we propose a self-supervised calibration
procedure that lasts for approximately two minutes before deploy-
ing VoiceDirect in a new user’s environment. During this calibration
phase, the user is instructed to move in random directions while
speaking, allowing the system to capture both mmWave radar and
audio data in sync. The mmWave radar operates with a frame pe-
riodicity of 100ms, and we utilize 5 consecutive frames (covering
500ms) to track the speaker’s movement. By averaging the speaker’s
position across these frames, we achieve a precise location estimate,
which is critical for normalizing the corresponding speech signal.
This location normalization helps in compensating for distance-
related attenuation in audio signals. In addition to tracking the
user’s location, we also monitor the movement direction to infer
the speaker’s facing direction. While slight discrepancies between
the head and body orientation are expected, the user is asked to face
directly forward during calibration, minimizing such variations and
ensuring accurate initial fine-tuning of the model.

Once the calibration data is captured, we segment it into smaller,
500ms trainable units, assuming minimal displacement of the user
during each unit. To further enhance the model’s learning, we em-
ploy a sliding window approach with a stride of 250ms to extract
overlapping segments from the full two-minute calibration ses-
sion. This method significantly increases the amount of training
data available for fine-tuning the deep neural network (DNN). By
training on these overlapping windows, the model learns to adapt
dynamically to the speaker’s unique speech radiation pattern, com-
pensating for individual differences and environmental noise. A
major advantage of this approach is that it requires no manual
labeling of ground truth data, as the system automatically aligns
the mmWave radar information with the audio signals, using the
radar as a reliable reference for speaker orientation.

Through this self-supervised calibration process, VoiceDirect
is able to personalize the model for each user and environment,
significantly enhancing its accuracy and robustness. The system
can perform reliably even in previously unseen or acoustically
challenging environments, as the calibration allows it to generalize
effectively across a wide variety of users and spaces. This method
ensures that VoiceDirect maintains high precision in real-world
scenarios, providing consistent and accurate speaker localization
and direction estimation.

7 SYSTEM IMPLEMENTATION

Smart 
Hub Marked 

Speaking 
Direction

Marked 
Position

Radar

Mic Array

Figure 10: Experimental Setup.

7.1 Hardware Setup
We implement VoiceDirect using a low-cost microphone array [4],
an off-the-shelf AWR1843 radar [1] equipped with a data collection
board DCA1000EVM [2], and a laptop, as shown in Figure 10.
mmWave Radar: In VoiceDirect, we use the AWR1843 radar, a
commercially available portable (8.3𝑐𝑚×6.4𝑐𝑚, 30𝑔) mmWave de-
vice that is capable of real-time data capture. The compact form
factor and lightweight design make it ideal for embedding into
smart home systems. The mmWave radar has 3 transmitting anten-
nas and 4 receiving antennas, which allows it to generate highly
accurate spatial and velocity information. The frequency of the RF
starts at 77 GHz and increases after each chirp with a frequency
slope of 60𝐻𝑧, enabling precise distance and velocity measurements.
The detailed configuration of our FMCW radar is shown in Table 1.
This configuration enables our radar to achieve a range resolution
of 4.3𝑐𝑚 and a maximum range of 9.02𝑚, making it well-suited
for indoor applications where high-resolution motion tracking is
required.
Microphone Array: VoiceDirect uses the commercially available
ReSpeaker Mic Array (70𝑚𝑚 × 70𝑚𝑚 × 13.3𝑚𝑚) that has 4 high-
performance digital microphones capable of far-field voice capture.
It uses 5V power supply frommicro USB and can easily be connected
to a laptop to capture and stream audio data at a maximum of 16𝑘𝐻𝑧
sampling rate.

7.2 Software Setup
We connect and control the mmWave radar with a laptop running
Linux operating system utilizing the mmWave-SDK from TI [3].
The mmmWave-SDK enables VoiceDirect to change the chirp con-
figuration and use a software trigger to emit chirps in real-time. We
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Parameter Value Parameter Value
No. of frames 30 Frame periodicity 100
No. of chirps 64 No. of ADC samples 256
ADC start time 3 Idle time 3
Frequency slope 60 Ramp end time 64

Table 1: Configuration of the mmWave radar.

develop a simple UDP-based program to collect packets from the de-
vice and parse them into data frames. The program also triggers the
microphone array at the same time to start capturing and streaming
the audio data. The microphone array has a voice detection mode
which continuously listens for the presence of voice, and whenever
speech is detected, the whole system is triggered to start capturing
data from both radar and audio modalities.

7.3 Neural Network Setup
For training and inference in our system, we use a 500ms signal
length, equivalent to 5 mmWave radar frames and 8, 000 audio
samples, as input to the DNN. Although the speech signal, including
the wakeword and voice command, usually lasts 1 − 3 seconds, we
repeatedly run the DNN on the same command with a 250ms stride
until the command ends. During inference, we average the most
similar ⌊𝑁2 + 1⌋ speaking direction estimations, where 𝑁 is the
number of DNN executions on the signal. This approach is chosen
because large movements of user can disrupt speaker localization
and signal processing. The 500ms window minimizes these effects,
assuming minimal indoor movement impact within this duration.

7.4 Micro-benchmark
To evaluate the performance of VoiceDirect in real-time operation,
we conducted micro-benchmark tests on a typical consumer-grade
laptop. All inference and processing tasks were performed on an
HP Linux laptop equipped with 4 GB of RAM and an Intel Core i5
processor. The micro-benchmark focused on measuring the time
required for each step in the inference pipeline, including audio
Direction of Arrival (DoA) estimation, radar and audio signal pre-
processing, and the final multimodal deep neural network (DNN)
used for speaking direction estimation.

The total time required for each iteration of the inference pipeline
is 1.2 seconds. Table 2 provides a breakdown of the time taken by
each component of the pipeline.

Step Time (seconds)
Audio DoA Estimation 0.2
Preprocessing (Radar and Audio) 0.7
Multimodal DNN Inference 0.5
Total 1.2

Table 2: Time taken for each step in the inference pipeline.

The multimodal DNN used in this process consists of 5M train-
able parameters. The model was trained using the Adam optimizer
with an initial learning rate of 1 × 10−3. A StepLR learning rate

scheduler was employed, with a step size of 100 epochs and a sched-
uler gamma of 0.9, allowing the learning rate to decrease every 100
epochs. The model was trained over 1000 epochs, using both audio
and mmWave radar data collected from our experimental dataset.
Training was conducted on a machine with higher computational
resources, but the micro-benchmark for inference was performed
on the HP Linux laptop to simulate real-world performance in
resource-constrained environments.

8 EVALUATION
8.1 Experimental Setup

Data Collection:In our experiments, 8 participants were asked to
stand at various locations in an indoor environment and give 6 dif-
ferent voice commands, such as "Alexa, play music" and "Ok Google,
turn on," while facing different directions. These directions were
pre-determined by placing dummy IoT devices at various locations
around the environment. Between 5 and 10 such IoT devices were
marked, where the participants directed their gaze while uttering
the voice commands. All participants spoke at their normal speech
speed and volume, in the presence of background noise such as
HVAC systems, air conditioning, and outside chatter. We randomly
placed the hub at different locations within the environment, en-
suring that the user remained within the mmWave radar’s field of
view. The recommended position for placing VoiceDirect is in a
corner of the room at a 45◦ angle for optimal coverage.

We collect data in 6 different environments including residential
living rooms, lab spaces, and large conference rooms in a commer-
cial building. In total, we collect 6, 000 pairs of 3-second samples (i.e.,
the mmWave and audio signal), on which, we apply a 80%-20% split
for creating the training and evaluation datasets.
Metrics and Baseline:We evaluate our system for both user lo-
calization and speaking direction estimation. We use the Euclidean
distance as the metric for user localization and the mean absolute
error as the metric for speaking direction. In all of our experiments,
we report the median error as well as the CDF plot to demonstrate
the performance of the system.

We compare the performance of VoiceDirect against two multi-
device, audio-only solutions as the baselines. Specifically, we use a
2-device and a 3-device audio-only distributed system where the
devices use triangulation to estimate the user location and share
information with each other to estimate the radiation pattern of
the speech signal, and consequently the speaking direction, by
following the algorithm described by the authors in [27].

8.2 Overall Performance
In Figure 11 we compare the performance of VoiceDirect against a
2-device and a 3-device audio-only solutions for both user localiza-
tion and speaking direction estimation. Figure 11a shows the CDF
plot of localization errors, where we can see that for audio-only
solutions, the 90%tile localization error is more than 80cm and the
maximum error is 3.4m. In comparison, VoiceDirect has a maximum
localization error of 60cm, which is a significant improvement over
audio-only algorithms.

Figure 11b shows the CDF plot for estimating speaking direction.
The median speaking direction error for VoiceDirect, 2-device, and
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Figure 11: Comparison of VoiceDirect with audio-only multi-device algorithms.

3-device solutions are 19◦, 52◦, and 35◦ respectively. Furthermore,
in 70% of test cases, VoiceDirect achieves a speaking direction
estimation error of less than 25◦. This level of accuracy is sufficient
for correct device arbitration among several IoT devices uniformly
distributed around the room. Finally, less than 10% of the test data
exhibits a large speaking direction error, leading to a long tail in the
CDF plot. The primary contributors to these instances are incorrect
localization due to noisy and complex multi-path environment and
rapid movement of the speaker. We also show how VoiceDirect is
affected by the user-to-device distance in Figure 11c.

8.3 Cross Utterance Performance
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Figure 12: Speaking direction estimation error for (a) unseen
utterances and (b) unseen environments.

To estimate the robustness of VoiceDirect to variations in dif-
ferent voice commands, we reserve two specific voice commands
solely for evaluation and exclude them from the training process
to ensure they remain unseen by the model. From Figure 12a, we
observe that VoiceDirect is significantly more robust to unseen
voice commands than audio-only solutions, as it does not rely
solely on the audio modality for estimation. Instead, the fusion
of radar and audio signals allows VoiceDirect to better generalize
across different commands. The median speaking direction error
for VoiceDirect, 2-device, and 3-device solutions are 23◦, 60◦, and
34◦ respectively, clearly demonstrating the advantage of multi-
modal fusion. This proves that by integrating radar and audio data,
VoiceDirect achieves greater resilience in estimating speaking di-
rection, even for voice commands it has never encountered during
training, making it highly adaptable in real-world applications.

8.4 Cross Environment Performance
To find out how VoiceDirect performs in a new environment, we
split our dataset and hold data from two environments (out of 6)
for evaluation only. Figure 12b shows that VoiceDirect attains a
median speaking direction error of 25◦. Although the difference
between VoiceDirect and 3-microphone solution gets slightly lower
in unseen environment due to radar’s dependency on environment
multipath, VoiceDirect still outperforms audio-only solutions.

8.5 Cross Speaker Performance
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Figure 13: Speaking direction estimation error for (a) unseen
speaker and (b) moving speaker.

For this experiment, we leave two speakers out from our dataset
for evaluation only. Figure 13a shows the CDF plot of speaking
direction estimation errors for unseen speakers. We see that the me-
dian speaking direction error for VoiceDirect, 2-device and 3-device
solutions are 29◦, 52◦, and 38◦, respectively. Overall, VoiceDirect
outperforms audio-only algorithms even when the speaker is com-
pletely unseen.

8.6 Effect of Mobility
To assess the impact of speaker mobility on performance, we con-
duct sessions where the speaker moves or engages in activities
while issuing voice commands. As depicted in Figure 13b, VoiceDi-
rect greatly outperforms audio-only algorithms in such instance
due to radar’s superior performance in capturing human motion.
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Figure 14: Speaking direction estimation error in the pres-
ence of (a) multiple speakers and (b) environment noise.

8.7 Effect of Multiple Speakers
In VoiceDirect, the radar’s ability to filter out the speaker’s point
cloud depends on the initial DoA estimation from audio, since
higher DoA error makes the location refinement using radar more
error-prone. For this experiment, we arrange a data collection ses-
sion where one speaker gives voice commands and 1/2 persons talk
in the background. The audio-based DoA algorithm estimates the
DoA of the separated voice command only. Figure 14a shows the
CDF plot for speaking direction estimation errors in the presence
of multiple speakers. The median error for VoiceDirect decreases
from 19◦ to 29◦, however it still outperforms audio-only algorithms.
Even during high DoA estimation error, VoiceDirect can localize the
speaker better by using radar, unless the estimated DoA completely
shifts towards the other speaker. This makes VoiceDirect more
capable of handling noisy environment. We also show the result
of speaking direction estimation in the presence of environment
noises such as HVAC in Figure 14b.
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Figure 15: Real-time speaking direction estimation of a single
user.

8.8 Real-time Evaluation

Experimental Setup: In addition to evaluating VoiceDirect on a
test set, we design a real-time deployment scenario focusing on
device arbitration. We invite three volunteers into a room for evalu-
ation, each participating in three different sessions. The room con-
tains five IoT devices. Before each session, the system is fine-tuned
using self-supervised learning as mentioned in 6.4. The sessions

last 150 seconds, consist of 15 voice commands and are divided
into three sub-sessions. In the first sub-session, the user gives voice
commands to five different IoT devices while standing in the mid-
dle of the room. Next, the user naturally moves within the room
while issuing commands to the same devices. Finally, the user starts
giving commands near the smart hub and gradually moves further
away. After signal processing and DNN execution, the smart hub
sends the inference results to a server.
Experimental Results: Figure 15 displays the speaking direction
estimation results for a single user session. The first row shows the
speaking direction error in degree, while the second row shows the
facing integer error as mentioned in [27]. The facing integer error
quantifies the number of devices between the one the user is actually
addressing and the one identified by VoiceDirect’s inference. From
the figure, we can see that the speaking direction error surpasses
40◦ in 1 instance, leading to a facing integer error of 2. Overall,
VoiceDirect attains a 80% accuracy and a reduced median error of
22◦.

9 RELATEDWORK

Sound Source Localization: The literature on sound source lo-
calization is rich with diverse methodologies designed to accu-
rately determine the spatial origin of acoustic signals. Proposed
solutions include using time difference of arrival(TDoA) based ap-
proaches [12], energy based approaches [22] and recently DNN
based approaches [5, 10, 25] achieving exceptional accuracy.
Speaking Direction Estimation: Existing DNN-based speaking
direction estimation works mostly use single mic array [6], [31].
This limits the performance significantly as in [6] the authors re-
ported 65.4% accuracy for eight-class classification task, and in [31]
the authors reported an average speaking direction error of 57◦.
In [27] the authors proposed signal processing based solution us-
ing multiple microphone arrays to estimate the speaking direction.
However, it requires every smart device to include a microphone
array. [32] reports 23-degree median error with two microphone
arrays, but the evaluation is done only on speaker sitting on a chair
in a controlled lab environment.
Human Pose Estimation using mmWave Radar: The literature
of using mmWave radar in indoor environment mainly focuses
on estimating human poses and mesh [23, 28–30], healthcare [33],
security [11] etc. Authors in [30] extracted point cloud from range-
Doppler heatmap and feed them to a PointNet like architecture for
estimating human pose. [14] uses two AWR1843 radar for more
accurate estimation of human body.In [23] authors proposed a
human activity recognition system using mmWave radar. However,
these systems focus on body pose only and can not detect head
orientation due to the limitation of mmWave signal resolution.
Audio and mmWave Fusion: Fusion of radar and audio signal
has mostly been proposed in audio acquisition systems where radar
aids audio modality in capturing and enhancing speech signal in the
presence of extreme noise [8, 15, 19]. However to our knowledge,
VoiceDirect is the first system that fuses radar and audio signal for
indoor localization and device arbitration problem.
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10 CONCLUSION AND FUTURE DIRECTION
In this paper, we present VoiceDirect, a novel end-to-end fusion
system that combines mmWave radar and audio signals for speaker
localization and speaking direction estimation. By leveraging the
complementary properties of mmWave radar, which excels in spa-
tial resolution and motion detection, and acoustic signals, which
capture voice features, VoiceDirect provides a more accurate and
robust estimation of both the location and speaking direction of indi-
viduals giving voice commands. The system is designed to perform
effectively across a wide range of indoor environments, including
rooms with varying levels of clutter and acoustic conditions. Our
experimental results demonstrate that VoiceDirect significantly out-
performs prior works in both localization accuracy and speaking
direction estimation, due to its multimodal approach that mitigates
issues such as noise and multipath effects typically encountered by
audio-only or radar-only systems.

Looking ahead, future research on VoiceDirect could focus on
addressing several key challenges to improve its robustness, scalabil-
ity, and versatility. One promising direction is extending the system
to work in larger, multi-room environments, which would require
further development in device coordination and communication to
manage overlapping detection zones and ensure seamless tracking
across connected spaces. Additionally, expanding the dataset to
incorporate a more diverse population, including users with vary-
ing accents and age groups, would enhance the system’s ability
to generalize and perform reliably across different demograph-
ics. Future work could also explore implementing such systems in
resource-constrained, energy-harvesting environments, following
works like [16–18], to improve sustainability and operational effi-
ciency. Finally, integrating advanced features such as gesture recog-
nition, emotion detection, or user intent inference could broaden
the system’s applications beyond basic speaking direction estima-
tion, enabling its use in fields such as human-computer interaction,
immersive virtual reality experiences, and smart environments.
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