
WiP Paper: BUSted Second Stop! A First Step for Breaking
Cryptographic Applications on MCU-based IoT Devices

André Barbosa, Cristiano Rodrigues, Tiago Gomes, and Sandro Pinto
Centro ALGORITMI / LASI, Universidade do Minho

{pg50216,id9492}@uminho.pt,{mr.gomes,sandro.pinto}@dei.uminho.pt

ABSTRACT
IoT devices have become ubiquitous in modern society. However,
the security of the newly connected devices, typically powered
by microcontrollers (MCUs), has not been thoroughly investigated.
One of the overlooked types of attacks onMCU-base IoT devices are
microarchitectural side-channel attacks. Until recently, microarchi-
tectural side-channel attacks on MCUs were deemed unlikely due
to their perceived simplicity. The BUSted attack has challenged this
assumption by unveiling a novel timing-based microarchitectural
side channel on the bus interconnect, impacting all mainstream
MCUs. BUSted introduces two variants, single-run and multi-run,
however only the former was implemented against a simple Smart
Lock application. This paper takes the first steps toward exploit-
ing more advanced targets, such as cryptographic applications, by
exploring the BUSted multi-run variant. We introduce practical
methods for profiling cryptographic applications and address the
limitations of the single-run variant, particularly the impractical
high profiling time. We propose a new BUSted interrupt-based
multi-run methodology to trace the victim on a per-clock basis. Our
approach includes a trampoline and sliding window technique to
reduce stack interference and enhance profiling granularity. We
demonstrate the effectiveness of this solution by successfully pro-
filing the TinyCrypt implementation of AES-CBC.

CCS CONCEPTS
• Security and privacy→ Embedded systems security.

KEYWORDS
Side-Channels, Microarchitecture, Microcontrollers, Bus, Multi-Run

1 INTRODUCTION
The Internet of Things (IoT) has connected common everyday-use
devices, such as refrigerators, watches, and light bulbs, to the In-
ternet. While this connectivity has introduced new functionalities,
it has also exposed these devices to remotely exploitable attacks.
One of the stealthiest types are the so-called microarchitectural
side-channel attacks. This class of attacks exploits the side effects
of computational properties to extract sensitive information by
leveraging secret dependent traces left in the processor’s microar-
chitectural states. Besides being prominent in powerful processors,
such as application processor units (APUs), with several attacks
unveiled in the last decade [1, 4, 5, 7–10, 14, 21], these attacks were
often overlooked in microcontrollers (MCUs), which are the core
of the majority of IoT devices, being Nemesis [18] and BUSted [16]
the only know attacks unveiled so far. The Nemesis attack [18]
demonstrated information leakage from an MCU by leveraging the
timing differences inflicted by the CPU interrupt logic. However, it
was only demonstrated in the not-very-widespread MSP430 MCU.

BUSted [16] exploits timing differences in the arbitration logic
of the bus interconnect through the contention inflicted when mul-
tiple bus mains1 try to access the same bus secondary. It has been
demonstrated scalable across the full MCU spectrum, including PIC,
RISC-V, and Armv6/7/8 MCUs. This attracted the attention of ma-
jor security-oriented news outlets [12, 15] and prompted Arm [2]
and WolfSSL [19] to release security advisories. The authors of the
BUSted attack proposed two variants: the single-run and multi-run
variants. The first variant was implemented to exploit a Smart Lock
application deployed in the secure world of two Armv8-M MCUs
(Arm Cortex-M23 and -M33). The multi-run variant was theorized
and speculated but still remains to be demonstrated. We argue that
implementing the multi-run variant of the BUSted attack targeting
cryptographic algorithms is more challenging than the authors
claim to be. However, a methodology capable of compromising
cryptographic-hardened applications holds the power to jeopardize
all IoT infrastructure. Thus, we decided to investigate:What are the
underlying challenges of implementing the BUSted attack against a
cryptographic algorithm?

In this paper, and as a first step towards answering this ques-
tion, we address the limitations of the BUSted single-run variant
when applied to compute-intensive code, such as cryptographic
applications, and show that the BUSted multi-run variant is a viable
solution. Our primary observation is that the BUSted single-run
methodology is unsuitable for compute-intensive code due to its
requirement for profiling each victim clock cycle. This results in
a linear increase in profiling time as the clock cycles of the victim
application increase. To substantiate our findings, we conducted
preliminary experiments profiling two cryptographic applications:
AES tinyCrypto and RSA WolfSSL. The results demonstrate the
impracticality of the single-run attack methodology for compute-
intensive code, for instance, the total time to collect a single trace
on RSA WolfSSL is in the the order of magnitude of years.

To address this issue, we propose a newBUSted profiling interrupt-
based approach, similar to Nemesis [18] and SGX-Step [17]. This
method interrupts the victim at each clock cycle2, gathers the side-
channel information, and triggers the mechanism to interrupt the
next clock cycle. Transitioning from a single-run to an interrupt-
based multi-run methodology posed two significant challenges: (i)
the automatic stacking by the CPU upon each interrupt interferes
with the detection of contention, and (ii) the interrupt-based ap-
proach reduces trace granularity from one clock cycle to multiple
clock cycles. To overcome the former challenge, we introduced a
novel approach using a trampoline setup code, a code interposed
between the interrupt handler and the victim code, to avoid stack
interference. For the latter, we applied a sliding window technique,

1Authors replaced master and slave terminology with keywords main and secondary.
2This approach expands BUSted assumptions to consider the victim can be interrupted.



Barbosa et al.

which fuses several partial traces into one full trace, mitigating the
granularity degradation caused by the interrupt-based approach.

We validate the effectiveness of the proposed BUSted multi-run
methodology by tracing the TinyCrypt [11] implementation of the
AES-CBC cryptographic algorithm. We obtained distinct traces for
different plaintexts, demonstrating early evidence that the BUSted
multi-run methodology can be applied to cryptographic targets.
This research provides the first steps towards the full exploitation
of cryptographic applications, by providing promising empirical
evidence on the applicability of BUSted to compute-intensive code.
In summary, the paper makes the following contributions: 1)We
address the inherent challenges in implementing the multi-run vari-
ant of the BUSted attack; 2)We provide the design of the BUSted
multi-run variant profiling phase tailored for cryptographic applica-
tions; and 3)We evaluate the effectiveness of the proposed solution
by profiling a cryptographic algorithm with promising results.

2 OVERVIEW, MOTIVATION, AND
CHALLENGES

In this section, we present the adversary model and provide an
overview of the BUSted attack and its variants: single-run andmulti-
run. We then motivate this work by conducting a preliminary study
on the limitations of the BUSted single-run attack methodology.

2.1 Scope and Adversary Model
Scope. Similar to BUSted, we target devices with single-core MCUs,
pervasive in modern IoT devices. MCUs are specialized processing
units with limited computational power and memory, designed
with simple microarchitectures featuring 2-3 pipeline stages, small
caches, and no advanced predictors. This design prioritizes energy
efficiency and cost effectiveness in resource-constrained environ-
ments. MCUs do not support virtual memory and are highly deter-
ministic, consistently producing the same results under identical
conditions. Prominent examples include the MSP470, Arm Cortex-
M4/7, and new security-oriented Arm Cortex-M23/33.

Adversary model. In line with BUSted, we assume the attacker
and the victim operate in different security domains. The attacker
has knowledge of the victim’s code, such as an open-source crypto-
graphic library containing secret-dependent control flows. During
the profiling phase, we assume the spy has control over the victim
and the environment. Profiling is conducted offline in a lab set-
ting, replicating a real attack scenario with the spy controlling all
variables. The spy and the victim share the same physical memory
bank, and the victim operates upon the attacker’s requests. We also
assume the attacker has full access to and control over one isolated
domain and its resources, including peripherals (e.g., timer) and bus
mains (e.g., DMA). Unlike BUSted, we assume that interrupts are
enabled, the attacker can interrupt the victim’s execution, and there
are multiple opportunities to extract the secret. We do not consider
physical attacks such as power side channels or fault injections,
which require physical access to the target device.

2.2 BUSted Attack
BUSted is a side-channel attack that explores the side effects of the
MCU bus interconnect arbitration logic to bypass security guaran-
tees enforced by memory protection primitives. BUSted leverages

Figure 1: Illustration of the profiling SGN using BUSted
single-run attack variant methodology.

timing differences created by contention on the bus interconnect
arbitration logic, to capture the victim’s memory access patterns.
The principle behind this attack is that when multiple bus mains
(e.g., CPU or DMA) access the same secondary resources concur-
rently, one main’s access will be delayed in time. This delay is what
creates the microarchitectural channel leveraged by BUSted. The
overall attack is divided into (i) profiling phase and (ii) exploitation
phase. In the profiling phase, the spy creates a template (i.e., side-
channel patterns) by tracing each vulnerable path3 in the victim. In
the exploitation phase, the spy compares the trace of the victim’s
execution with the template to determine the secret.

Variants. Depending on the victim’s application, the exploita-
tion phase follows different methodologies, creating two possible
BUSted variants, single-run andmulti-run. In the single-run vari-
ant, the attacker collects all side-channel data on the fly to reveal
the secret while the victim is computing over it. As the secret is
ephemeral (i.e., it changes in each victim run), the attacker just
has one chance to leak it. In the multi-run variant, the attacker re-
peatedly executes the target victim to collect multiple side-channel
observations. The same secret (e.g., private key) is used in each
execution, and the corresponding side-channel data is collected
for every run. The attacker analyzes this data to identify patterns
related to the secret data, which will reveal its content.

Hardware gadgets and SGNs. BUSted introduced the concept
of hardware gadgets and smart gadget networks (SGNs) to enable
side-channel attacks using stateless microarchitectural components
(i.e., bus interconnect) on single-core MCUs. Hardware gadgets
are memory-mapped peripherals commonly found in MCUs (e.g.,
timers and DMAs) that can be programmed to perform specific
spy logic (e.g., memory accesses). The key observation is that these
hardware gadgets can operate without CPU intervention, allowing
them to automate concurrent spy logic while the victim’s code runs
on the (single-core) CPU. They can monitor victims’ memory access
patterns at clock cycle granularity. SGNs interconnect multiple
hardware gadgets to perform more advanced attacker logic.

2.3 Preliminary Study and Limitations
The BUSted attack was evaluated using a simple Smart Lock Appli-
cation, i.e., single-run variant. To assess BUSted’s performance on
compute-intensive code, we profiled three different applications:
the Smart Lock Application exploited by BUSted (as reference), the
TinyCrypt AES-CBC algorithm [11], and the wolfSSL RSA algo-
3Vulnerable path refers to any victim’s control flows dependent on secret data.



WiP Paper: BUSted Second Stop! A First Step for Breaking Cryptographic Applications on MCU-based IoT Devices

rithm [20]. To collect the traces, we implemented an SGNmimicking
the BUSted single-run methodology.

Single-run profiling SGN. Figure 1 depicts a high-level view of
the SGN architecture and its inner workings. Firstly, the spy starts
timer(i). Once timer(i) completes counting the desired cycles, it
triggers 2 the DMA and resets timer(ii) to zero. Then, the DMA
reads 3 from a predefined shared memory bank, the same one
accessed by the victim, causing contention. The DMA transfers data
4 into the control register of the free-running timer(ii), stopping
it immediately. After timer(ii) stops 5 , the spy reads its counter
value. A higher-than-normal value in timer(ii) indicates that the
DMA took longer to stop it, signaling contention. This process
repeats until the victim executes the last instruction.

Results and limitations. The results4, in Table 1, demonstrate
that the BUSted single-run methodology is unsuitable for mounting
attacks against compute-intensive code since the profiling time
grows linear O(n) with the growing number of clock cycles of the
victim. The BUSted single-run approachmeasures contention in one
clock cycle per victim run, requiring the profiling SGN to execute
exactly as many times as the victim, e.g., 41476 times for AES-
CBC on STM32F407. This limitation renders this BUSted variant
ineffective for applications with long execution times. For instance,
getting a single trace of wolfSSL RSA would require more than a
year on STM32F407 and around fourteen years on STM32L552.

2.4 Challenges
To implement an effective profiling methodology for cryptographic
algorithms, the spy must meet three requirements: (R1) The spy
must create contention in a shared memory bank between the
spy and the victim. (R2) The spy must record contention on the
bus interconnect caused by the victim’s secondary port. (R3) The
spy must perform multiple traces within a reasonable timeframe.

Challenges. We share two challenges with the BUSted attack, C1
and C2, and found a new challenge C3. (C1) The spy cannot access
past microarchitecture states. The bus interconnect is stateless,
requiring timing differences to be assessed in real-time. (C2) The spy
and the victim cannot run concurrently since MCUs are single-core.
(C3) BUSted single-run methodology is not suitable for compute-
intensive code. We aim at significantly more complex victims with
a different attack approach (multi-run), which requires assessing
multiple traces that would be prohibitively time-consuming with
the current BUSted single-run profiling approach.

3 DESIGN
Our goal is to develop an effective and reliable profiling method
that is capable of tracing compute-intensive applications. In this
section, based on the profiling methodology defined in BUSted, we
present the design of an augmented profiling method that can be
used to profile a cryptographic application.

3.1 Augmented Profiling Methodology
To address C3, we introduce an interrupt-based trace approach. Fi-
4For the wolfSSL RSA application, we extrapolate the total profiling time from the
average profiling time of the first 10k clock cycles.

Victim STM32F407 (@168 MHz) STM32L552 (@110 MHz)
Execution Cycles Profiling Time Execution Cycles Profiling Time

Smart Lock App. 2637 39ms 7480 508ms
AES (TinyCrypt) 41476 16 s 57895 30 s
RSA (wolfSSL) 81931195 432 days 220545898 14 years

Table 1: Profiling using BUSted single-run methodology on
STM32F407 (Cortex-M4) and STM32L552 (Cortex-M33).

gure 2 depicts the SGN we implemented in §2.3, now adapted for
the new multi-run approach. The victim code is interrupted at each
clock cycle, allowing the SGN to gather side-channel information.
We enhanced the single-run SGN with additional hardware, high-
lighted in Figure 2 with a red watermark. This hardware includes a
new timer(iii), which uses hardware interrupts to stop the victim
code and switch to the side-channel information-gathering routine
(i.e., ISR). Timer(iii) enables the SGN to shift from generating con-
tention in one clock cycle to creating contention in every clock
cycle per victim execution, allowing for much faster profilings,
making the SGN meet (R3). The multi-run SGN flow is similar to
the single-run, but in this case, when timer(i) finishes counting the
desired cycles, it also 2 triggers the new timer(iii). Timer(iii) then
starts countdown, and upon completion, it triggers an interrupt
that halts the victim code and switches to the ISR. The ISR restarts
the hardware gadgets and triggers another interrupt right after
the processor switches from the ISR back to the victim code. This
repeats in a loop until the victim code executes the last instruction.

3.2 Dealing with Stack Interference
Design challenge. On Arm Cortex-M architecture, after an inter-
rupt event is triggered, the processor first saves (pushes) several
registers onto the stack before entering the ISR. This register state-
saving operation is called stacking. At the end of the ISR, these
registers are restored (popped) to the register bank, allowing the
processor to resume its previous execution state, an operation called
unstacking. Both operations are done automatically by hardware
and cannot be disabled by software. Both stacking and unstacking
operations are performed in the SRAM, which interferes with SGN
memory accesses and prevents it from creating contention on the
bus, precluding (R1) requirement. This issue is caused by the bus
arbitration logic, i.e., round-robin policy. When multiple bus mains
(e.g., CPU and DMA) request access to the bus simultaneously, the
arbiter grants access in a cyclic order, ensuring each main gets a
fair chance to use the bus. The SGN’s DMA is configured inside the
ISR to access memory and create contention in the first clock after
the ISR ends execution. However, due to the unstacking (which
happens on the ISR exit and is performed by the CPU), the SGN’s
DMA is always granted access to the bus (right after unstacking),
thus not experiencing any delay hence not seeing contention.

Solution. We introduce a Trampoline approach, illustrated in
Figure 3, to eliminate unstacking interference by running a specific
intermediary logic before returning to the victim code. Without
the trampoline, execution flows directly from the ISR A to the
victim code C . With the trampoline, execution moves from the
ISR A to the trampoline setup code B (where unstacking occurs)
and then to the victim code C . This intermediary step allows us
to remove stack interference and create contention satisfying (R1)



Barbosa et al.

VICTIM:

RESET TIMER CNT

TRIGGER

Timer (i)

Timer (ii)
WRITE TO CONTROL

REGISTER

DMA

SPY

READ

TRIGGER

Shared
Memory Bank

NOP
LDR
LDR
STR
NOP

...

ISRTimer (iii)

Single-Run HW gadgets:

New HW gadget & ISR:

 INTERRUPT

Contention

Figure 2: SGN setup with the interrupt-based trace approach.

requirement. The trampoline process is as follows. On ISR entry,
the core automatically saves the state context on the stack 1 , i.e.,
xPSR, Return Address, R12, and R0-R3. On the ISR, we emulate the
stacking, creating a second copy of it. In this process, the return
address is changed to return to our trampoline setup code 2 . Upon
ISR exit, the core does automatic unstacking from the copy of the
stack we created, diverting execution to our trampoline setup code
3 .Within our setup code 4 , we reconfigure the profiling SGN, and
before resuming the victim execution, we pop the stack, emulating
the ISR exit. Lastly, a new profiling iteration is triggered after the
victim advances its execution in one clock 5 .

3.3 Dealing with Low Granularity
Design challenge. We need to obtain a high-granularity victim’s
trace to maximize the side-channel information obtained during
the profiling phase. Ideally, we want to distinguish whether there
was contention (or not) in every clock cycle. While not mandatory,
this increases the attacker’s chance of getting microarchitecture
leakage from the victim’s execution. However, the introduction
of the interrupt-based approach and the trampoline reduced the
overall granularity of the victim’s trace, resulting in a loss of side-
channel information in some of the victim clock cycles.

Solution. To address this challenge, we implemented a Sliding
Window approach. Initially, a victim trace is performed in the first
clock cycle of the victim. Then, based on the size of the sliding
window, which corresponds to the granularity of the trace, the
spy conducts additional traces, each shifted by one clock cycle, to
cover all victim code. In the end, all partial traces are combined to
create a single comprehensive trace that encompasses full victim
execution with a granularity of one clock cycle. Figure 4 illustrates
an example of a sliding window. If the trace granularity is four
clock cycles, a sliding window of size four is required. This method
enables monitoring of all the victim’s clock cycles. As illustrated
in Figure 4, a standard trace A , without using the sliding window
technique, can monitor only three out of twelve clock cycles of the
victim. In contrast, the sliding window B , by combining all traces,
achieves full coverage of the victim’s execution.

4 IMPLEMENTATION AND EVALUATION
We implemented and evaluated the BUSted multi-run variant on
the STM32F407 and STM32L552, which feature Arm Cortex-M4 and
Cortex-M33, respectively. From now on, we will refer STM32F407
as F4 and STM32L552 as L5. In line with the BUSted attack, we also
focus on Arm MCUs due to their mass proliferation in IoT devices.

ISR    A

Trampoline
   Code      B

VICTIM
  Code      C

(Stack)

Padding

Return Address

R0

Automatic
Stacking

stack pointer 
before stacking 

stack pointer 
after stacking 

After Automatic Unstacking

(Stack)

Padding

Return Address

R0

Automatic
Stacking

stack pointer 
before stacking 

stack pointer 
after stacking 

 After User Manual Unstacking

(Stack)

Padding

Return Address

R0

Padding

Return Addres

R0

Automatic
Stacking

stack pointer 
before stacking 

User Manual
Stacking

stack pointer 
after stacking 

Modificated return
addres to my 
Setup Code

Figure 3: SGN interrupt-based with trampoline setup code.

4.1 Profiling Implementation
Profiling setup. In our SGN setup, the spy leverages timers to
generate precise intervals for initiating DMA transfers and mea-
suring their durations. Furthermore, the spy uses the DMA as a
malicious bus main to create contention on shared memory banks
by repeatedly executing the same transfer. Considering the spy’s
complete control over the victim within its domain, the following
steps outline our profiling setup: 1) The spy configures the periph-
erals and builds the SGN; 2) The spy triggers the SGN; 3) The victim
is invoked and begins executing its instructions; 4) At a certain
point, as the victim executes, contention arises and an interrupt is
raised; 5) Upon each interrupt, the control shifts back to the spy,
allowing it to gather side-channel information (DMA latency) of the
clock/instruction monitored; 6) The spy triggers the SGN again in
preparation for interrupting the next instruction. This cycle repeats
until all instructions executed by the victim are traced.

Profiling Implementation. The timer’s interrupt must arrive pre-
cisely at the first clock cycle of the victim. We configured timers on
both platforms to generate interrupts upon reaching a pre-defined
threshold. With the SGN fully configured, successful exploitation
relies on achieving precise timing during SGN reconfiguration and
resuming the victim execution. There is no margin for deviation to
maintain accuracy and contention. The SGN was implemented on
two different platforms with distinct architectures and processors,
requiring us to manually fine-tune the SGN on each board.

Resources used. Our profiling SGN requires several platform re-
sources, i.e., peripherals. On the F4 platform, the SGN uses 3 out of
14 timers and 1 out of 16 DMA channels, accounting for 9.3% of the
total peripherals. Similarly, on the L5 platform, the SGN uses 3 out
of 17 timers and 1 out of 16 DMA channels, representing 5.4% of
the total peripherals. While our profiling SGN requires one more
timer than BUSted’s, this does not affect the feasibility of the attack,
as most MCUs typically have an abundance of timers.

4.2 Profiling Evaluation
Profiling metrics. Table 2, provides the profiling metrics (i.e.,
granularity and contention detection rate) from tracing a simple
victim comprising 1000 memory accesses. Victim execution times
and single-run contention points serve as references. We profiled
without a sliding window to evaluate the performance of a unique
trace. We found that on F4, the profiling (as expected) is optimal
with the trampoline, achieving a detection rate of 18.8%, with a
low granularity of 16. Surprisingly, L5 is more effective without



WiP Paper: BUSted Second Stop! A First Step for Breaking Cryptographic Applications on MCU-based IoT Devices

8 8

8
10

8
8

8

10

Start Profiling

while 0 do:

    

end

VICTIM
CODE:

End Profiling

nop;
 ldr;
nop;
nop;  
 ldr;
 ldr;
nop;
 ldr;
nop;
nop;
 ldr;
nop;

 

       With Sliding Window:

       Without Sliding Window:

1 2 3 4 5 6 7 8 9 10 11 12

10 88

    Final Result:

8 810 8 10 10 108 8 8 10 8

NOP NOP NOP NOP NOP LDRLDR NOP LDR NOPLDRLDR

Clock
Cycles

10
10

8
10

 1st Window
 2st Window

 3st Window
 4st Window

A

B

Figure 4: Illustration of a trace, with (A) and without (B)
sliding window. In green no contention and red contention.

the trampoline, with a high granularity of 2 and detecting more
points of contention, resulting in a detection rate of 16.9%. F4’s low
detection rate may appear problematic; however, it will be mitigated
when the sliding window technique is applied. The direct drawback
of a low detection rate is the increased number of windows required
for a full trace, which in turn raises the total profiling time.

Time Reduction.We conducted a series of experiments to mea-
sure the profiling time of AES-CBC mode from TinyCrypt and
RSA from wolfSSL on both the F4 and L5 MCUs, using a 32-bit
timer. Table 3 presents the profiling times of the multi-run (MR)
methodology, highlighted in bold, compared to the single-run (SR)
methodology detailed in §2.3. The multi-run profiling times show
significant reductions compared to the single-run on both platforms
and cryptographic algorithms. For instance, on L5, the profiling
time for AES was reduced by 600 times, and for RSA, approximately
300,000 times. These results hint at the suitability of the multi-run
methodology to profile compute-intensive applications.

Real Victim Trace. Figures 5 presents the traces obtained from
AES-CBC TinyCrypt (while RSA profiling was also done, discussion
focuses on AES-CBC due to space constraints) for the L5 and F4.
Each vertical line denotes the DMA latency at a specific clock cycle.
The orange line represents the contention threshold. The traces
were generated using two different plaintexts while keeping the
cryptographic key constant. Profiling for the L5 was conducted
without a trampoline, requiring 12 windows. Profiling for the F4
was conducted with a trampoline, requiring 4100 windows. Both
profiles exhibit distinct differences in the traces for each plaintext,
indicating a potential information leak. Being able to observe differ-
ences raises the likelihood of a cryptographic leakage. In AES-CBC,
trace variations may expose S-Box lookups, XORs, and CBC chain-
ing operations. Exploiting these trace variations is out-of-scope of
this paper and deferred for future work.

5 DISCUSSION AND NEXT STEPS
Microarchitectural influences on the Profiling mechanisms.
The target platform’s architecture and the CPU’s microarchitecture
influence the results of multi-run profiling. The F4 achieves opti-
mal results using a trampoline, while the L5 performs best without
one. The trampoline is effective for boards where stack interfer-
ence, bus arbitration, and DMA characteristics prevent hardware
gadgets from observing contention. However, these findings are

F4 (@168 MHz) L5 (@110 MHz)
T Gra CP Detect T Gra CP Detect

No Trampoline 424 3 10 3% 1075 2 124 16.9%
Trampoline 65 16 62 18.8% 22 81 17 2.3%
Exectuion Time 1010 1783
Single-Run CP 329 732

Table 2: Multi-run profiling metrics from tracing 1000 mem-
ory accesses, without sliding window. Trace in clock cycles
(T), Granularity (Gra), Contention Points (CP), and percent-
age of multi-run CP relative to single-run CP (Detect).

Victim F4 (@168 MHz) L5 (@110 MHz)
SR MR Reduction SR MR Reduction

AES (TinyCrypt) 16 s 1.6 s 10x 30 s 50 ms 600x
RSA (wolfSSL) 432 days 6 s 6220800x 14 years 24 min 306722x

Table 3: Profiling time of TinyCrypt AES and wolfSSL RSA
using BUSted multi-run methodology (MR) in comparison
with single-run methodology (SR), from §2.3.

preliminary. Further research is necessary to evaluate the perfor-
mance of our multi-run methodology on MCUs with more complex
microarchitectures (e.g., the Arm Cortex-M7).

Combining BUSTed Methodologies.We show that the single-
run methodology is unsuitable for compute-intensive code. We pro-
posed an interrupt-based multi-run BUSted methodology, which
notably reduces profiling time but adds complexity to the spy soft-
ware logic and reduces profiling accuracy. For simpler victims, the
single-run approach is preferable due to its precision and manage-
able profiling time. However, for compute-intensive code, the multi-
run methodology is a must. We consider single-run and multi-run
methodologies not as competing approaches but as complemen-
tary ones. We envision a hybrid BUSted methodology where the
multi-run performs a coarse-grained trace to identify potentially
vulnerable pieces of code, and the single-run provides a detailed,
clock cycle-accurate trace of a specific portion of the victim code.

BUSted Multi-run Exploitation Phase. This paper examines the
Profiling phase of the BUSted attack. Traces from profiling Tiny-
Crypt AES-CBC suggest that BUSted could exploit more compute-
intensive code. The profiling phase reveals variations in traces
from different plaintexts, indicating potential information leakage.
However, it is unclear whether these variations result from secret-
dependent or regular code. Further research is needed to evaluate
the level of information leakage in the traces, and additional profil-
ing is required for the multi-run Exploitation phase.

Hardware Gadgets and SGN complexity. The BUSted multi-
run attack reduces the complexity at the hardware gadget level.
Unlike the single-run variant, the multi-run does not need real-time
side-channel data collection. In the multi-run approach, the secret
remains constant, allowing the attacker to profile the same secret
repeatedly. Consequently, compared to the BUSted single-run, the
multi-run Exploitation phase becomes significantly simpler, relying
solely on offline correlation of multiple traces obtained during
profiling without the need for additional hardware. Supported by
the evidence in §4.1, we argue that a comprehensive BUSted multi-
run attack requires minimal additional hardware beyond what is



Barbosa et al.

Figure 5: TinyCrypt AES-CBC trace on L5, no Trampoline 12 Windows, and F4, Trampoline 4100 Windows.

presented in this paper’s Profiling phase. This paves the way for
full attack automation, as the software is much easier to automate,
and the hardware (SGNs) is far less complex.

6 RELATEDWORK
Side-channel attacks have become powerful tools for attackers seek-
ing to extract otherwise unavailable information. Despite extensive
research efforts over the past decades to raise awareness of software-
based side-channel attacks on APUs [1, 4, 5, 7–10, 14, 21], there is a
notable shortage of reported software-based side-channel attacks on
MCUs. The authors in [3, 6, 13] proposed powerful software-based
side-channel attacks, but these focus on the power consumption
of target devices rather than the timing differences inherent to
the microarchitecture of MCUs. The only known software-based
timing side-channel attacks on MCUs are Nemesis [18] and BUSted
[16]. Nemesis exploits timing differences in the CPU interrupt logic
of an MSP430 MCU. BUSted leverages timing differences in the
bus interconnect arbitration logic to mount successful exploits on
the Arm Cortex-M23/33 MCUs. Although BUSted introduced both
single-run and multi-run attack variants, only the single-run ap-
proach has been proven and exploited, which is not suitable for
cryptographic applications. Consequently, the BUSted multi-run
variant remains to be thoroughly investigated.

7 CONCLUSION
In this paper, we investigate the limitations of the BUSted single-run
variant when applied to compute-intensive code, such as crypto-
graphic algorithms. We propose a new interrupt-based multi-run
approach, which poses two new design challenges due to stack
interference and low trace granularity. We introduced two new
techniques to overcome these challenges: trampoline setup code
and sliding window. Using the proposed approach, we successfully
profiled an AES algorithm from TinyCrypt. This research takes the
first steps toward developing a side-channel attack methodology
capable of tampering with MCU-based cryptographic algorithms
and compromising the security foundation of modern IoT devices.

ACKNOWLEDGMENTS
This work is supported by national funds, through the Operational
Competitiveness and Internationalization Programme (COMPETE
2020) Project nº 179491; Funding Reference: SIFN-01-9999-FN-1794
91]; This work has been supported by FCT— Fundação para a Ciência
e Tecnologia within the R&D Units Project Scope UIDB/00319/2020
and grant 2020.08729.BD.

REFERENCES
[1] Onur Aciicmez and Werner Schindler. 2007. A Major Vulnerability in RSA

Implementations due to MicroArchitectural Analysis Threat. Cryptology ePrint
Archive.

[2] Arm. 2023. Clarification of Timing Side Channel Attacks on TrustZone enabled
Cortex-M based systems. https://developer.arm.com/documentation/ka005578/.

[3] Alessandro Barenghi et al. 2021. Exploring Cortex-M Microarchitectural Side
Channel Information Leakage. IEEE Access.

[4] Claudio Canella et al. 2019. A Systematic Evaluation of Transient Execution
Attacks and Defenses. In Proc. of USENIX Security.

[5] Daniel Gruss et al. 2015. Cache Template Attacks: Automating Attacks on
Inclusive Last-Level Caches. In Proc. of USENIX Security.

[6] Dennis Gnad et al. 2019. Leaky Noise: New Side-Channel Attack Vectors in
Mixed-Signal IoT Devices. In IACR Transactions on Cryptographic Hardware and
Embedded Systems.

[7] Moritz Lipp et al. 2018. Meltdown: Reading Kernel Memory from User Space. In
Proc. of USENIX Security.

[8] Maria Mushtaq et al. 2020. Winter is here! A decade of cache-based side-channel
attacks, detection mitigation for RSA. Information Systems.

[9] Paul Kocher et al. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Proc. of S&P.

[10] Xiaoxuan Louet et al. 2021. A Survey of Microarchitectural Side-channel Vulner-
abilities, Attacks, and Defenses in Cryptography. In Proc. of ACM.

[11] Intel. 2019. TinyCrypt Library. https://docs.zephyrproject.org/2.7.5/guides/
crypto/tinycrypt.html.

[12] Cyber Risk Leaders. 2023. From Spectre/Meltdown to side channel attacks on
microcontrollers. https://cyberriskleaders.com/from-spectre-meltdown-to-side-
channel-attacks-on-microcontrollers/.

[13] C. O’Flynn and A. Dewar. 2019. On-Device Power Analysis Across Hardware
Security Domains.: Stop Hitting Yourself.. In IACR Transactions on Cryptographic
Hardware and Embedded Systems.

[14] Colin Percival. 2005. Cache missing for fun and profit. In Proc. BSDCan.
[15] The Register. 2023. Arm acknowledges side-channel attack but denies Cortex-M

is crocked. https://www.theregister.com/2023/05/15/mcu_side_channel_attack/.
[16] C. Rodrigues, D. Oliveira, and S. Pinto. 2024. BUSted!!! Microarchitectural Side-

Channel Attacks on the MCU Bus Interconnect. In Proc. of IEEE S&P.
[17] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical

Attack Framework for Precise Enclave Execution Control. In Proc. of SysTEX.
[18] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying

Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In Proc.
of ACM CCS.

[19] WolfSSL. 2023. BUSted: Side-channel attacks to TrustZone-M separation. https:
//www.wolfssl.com/busted-side-channel-attacks-to-trustzone-m-separation/.

[20] WolfSSL. 2024. Algorithms - RSA. https://www.wolfssl.com/documentation/
manuals/wolfssl/group__RSA.html.

[21] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proc. of USENIX Security.

https://developer.arm.com/documentation/ka005578/
https://docs.zephyrproject.org/2.7.5/guides/crypto/tinycrypt.html
https://docs.zephyrproject.org/2.7.5/guides/crypto/tinycrypt.html
https://cyberriskleaders.com/from-spectre-meltdown-to-side-channel-attacks-on-microcontrollers/
https://cyberriskleaders.com/from-spectre-meltdown-to-side-channel-attacks-on-microcontrollers/
https://www.theregister.com/2023/05/15/mcu_side_channel_attack/
https://www.wolfssl.com/busted-side-channel-attacks-to-trustzone-m-separation/
https://www.wolfssl.com/busted-side-channel-attacks-to-trustzone-m-separation/
https://www.wolfssl.com/documentation/manuals/wolfssl/group__RSA.html
https://www.wolfssl.com/documentation/manuals/wolfssl/group__RSA.html

	Abstract
	1 Introduction
	2 Overview, Motivation, and Challenges
	2.1 Scope and Adversary Model
	2.2 BUSted Attack
	2.3 Preliminary Study and Limitations
	2.4 Challenges

	3 design
	3.1 Augmented Profiling Methodology
	3.2 Dealing with Stack Interference
	3.3 Dealing with Low Granularity

	4 Implementation and Evaluation
	4.1 Profiling Implementation
	4.2 Profiling Evaluation

	5 Discussion and Next Steps
	6 Related work
	7 Conclusion
	References

