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ABSTRACT
We present Antler, which exploits the affinity between all pairs
of tasks in a multitask inference system to construct a compact
graph representation of the task set and finds an optimal order of
execution of the tasks such that the end-to-end time and energy
cost of inference is reduced while the accuracy remains similar
to the state-of-the-art. We implement two systems: a 16-bit TI
MSP430FR5994-based custom-designed ultra-low-power system
and a 32-bit ARM Cortex M4/M7-based off-the-shelf STM32H747
board. We conduct both dataset-driven experiments as well as real-
world deployments with these systems. We observe that Antler’s
execution time and energy consumption are the lowest compared
to all baselines, and by leveraging the similarity of tasks and by
reusing the intermediate results from the previous task, Antler
reduces the inference time by 2.3X–4.6X and saves 56%–78% energy,
compared to the state-of-the-art. The source code is available here1.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Computing methodologies→Machine learning.
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1 INTRODUCTION
In recent years, we see an increased number of low-resource sys-
tems that are running deep neural networks under extreme CPU,
memory, time, and energy constraints [16, 24, 45]. Nowadays, it is
becoming common to see multiple neural networks co-residing on
the same portable, wearable, and mobile edge device in order to
offer a wide variety of intelligent applications and services to the
user [15, 18]. Many IoT devices have built-in voice assistants that
authenticate the speaker, understand what they say, and recognize
gestures, facial expressions, and emotions. Mobile vision technol-
ogy [10, 27–29, 35, 38, 44] is built intomanymobile and social robots
that perform on-device object recognition, obstacle detection, scene
classification, localization, and navigation. In order to increase the
accuracy and robustness of these classifiers, numerous multitask
learning (MTL) techniques have been proposed in the mainstream
machine learning literature [37, 40]. Some of these techniques have

1Source Code: https://github.com/YuboLuo/Antler.git

been adopted by the embedded systems community to scale up the
number of classifiers that co-exist on an embedded system [22, 25].

Unfortunately, multitask learning on low-resource embedded
systems still remains a challenge. Slow CPU, scarce memory (RAM),
and high overhead of external storage (flash) make the response
time and the energy cost of multitask inference on these systems
extremely high. To deal with these challenges, recent works [22,
25, 26] have proposed bold measures such as squeezing all [22, 25]
or most [26] of the neural networks into the main memory (RAM)
— in order to avoid the high overhead of storage and to rely on
fast, in-memory computation for the most part. However, speedup
gained in such extreme ways inevitably comes at the cost of lower
accuracy and/or hidden time and energy cost that overshadows
the benefit of in-memory execution. In general, state-of-the-art
multitask inference techniques for low-resource systems lack two
major aspects that could significantly reduce the inference time
and energy consumption:

Firstly, inference tasks that run on the same system generally
show affinity. For instance, a speaker identification task and a
speech recognition task running on a voice assistant device share
common latent subtasks such as noise compensation and phoneme
identification. These overlapping subtasks should be factored out
and executed only once to reduce the time and energy waste due
to repeating them for both tasks. Existing works [22, 25, 26] pack
multiple tasks in the main memory by sharing task constructs at
the granularity of weights. They do not exploit the higher-level
affinity between tasks and thus fail to recognize that even though in-
memory operations are faster, repeatedly executing subtasks adds
up to significantly higher overhead, especially when it involves
multiple convolutional layers.

Secondly, inference tasks that run on the same system gener-
ally manifest inter-task and intra-task dependencies – requiring
the system to execute tasks and subtasks in a certain order. This
also creates opportunities to skip a dependent task or a subtask.
For instance, voice classification tasks are routinely preceded by a
lightweight voice activity detector to reduce computational over-
head. Likewise, subtasks such as noise compensation and phoneme
detection often precede the rest of the audio processing pipeline
in typical speech classification tasks. Existing works [22, 25, 26]
that merge or load tasks based on the byte-values of the weights
are not capable of exploiting higher-level inter-task and intra-task
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dependencies, and thus they waste time and energy in executing
tasks and subtasks that are unnecessary.

In this paper, we introduce Antler – which exploits the affinity be-
tween tasks in a multitask inference system to construct a compact
graph representation of the task set. Unlike existing task grouping
techniques that are primarily concerned with inference accuracy
only, we construct task graphs considering both the accuracy as well
as the time and/or energy waste from repeated execution of sub-
tasks. Furthermore, we observe that different pairs of tasks exhibit
different degrees of affinity and the cost of switching from one task
to another is nonidentical. We formally prove that ordering tasks
in a multitask learning scenario is NP-Complete and provide an
integer linear programming formulation to solve it. We extend the
formulation to include dependency constraints between tasks and
subtasks. We describe a genetic algorithm to solve the optimization
problem for both constrained and unconstrained cases.

In order to evaluate Antler, we develop two systems: 1) a 16-bit
TI MSP430FR5994-based custom-designed ultra-low-power system,
and 2) a 32-bit ARM Cortex M4/M7-based off-the-shelf STM32H747
board. We conduct dataset-driven experiments as well as real-world
deployments with these systems. In the dataset-driven experiments,
we compare the performance of Antler against four baseline solu-
tions, including three state-of-the-art multitask inference systems
for low-resource systems: YONO [22], NWV [25] and NWS [26]
over nine datasets that are used in the literature. We observe that
Antler’s execution time and energy consumption is the lowest com-
pared to all baseline systems. By leveraging the similarity of tasks
and by reusing the intermediate results from previous task, Antler
reduces the inference time by 2.3X – 4.6X and saves 56% – 78%
energy, when compared to the baselines. In the real-world deploy-
ments, we implement two multitask inference systems having five
audio and four image inference tasks. Results show that Antler
reduces the time and energy cost by 2.7X – 3.1X while its infer-
ence accuracy is similar to running individually-trained classifiers
within an average deviation of ±1%.

2 OVERVIEW OF ANTLER
Antler is a tool for developing efficient multitask deep learning
models for low-resource systems that have extreme CPU, memory,
and energy constraints.We provide an overview of Antler, deferring
its technical details to later sections.

2.1 Input and Preprocessing
Tasks and Subtasks. Antler takes a set of inference tasks as the in-
put. For a given set of tasks,𝜏 = {𝜏1 (X, y1), 𝜏2 (X, y2), · · · , 𝜏n (X, yn)}
defined over input domain X having𝑚 examples, each task 𝜏i maps
an example, xj ∈ X to a class label, y(j,i) , where yi = [y(1,i) , · · · y(m,i) ].
A portion of a task is referred to as a subtask.

Preprocessing. Antler instantiates a neural network 𝜏i for each
task using a common network architecture, which is either trained
on the dataset (X, yi), or obtained via knowledge distillation when
pre-trained models are provided. A common network architecture
is necessary since Antler’s ultimate goal is to form a multitask
neural network that consists of two or more networks sharing one
or more of their network layers. A common network architecture
is methodologically obtained by running a network architecture
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Figure 1: Overview of Antler: (a) A set of tasks defined over a domain
or pre-trained models are taken as the input. A common network
architecture is individually trained to produce network instances
(one for each task). (b) A task graph is formed considering both accu-
racy and task execution cost. The task graph is retrained following
standard multitask learning training practices. (c) An optimal task
execution order minimizes the task execution cost.

search [8] that empirically optimizes the accuracy of all networks.
To speed up the search, we start with a library of popular architec-
tures [22, 25, 26] and run a hyper-parameter search to obtain an
architecture that maximizes the minimum accuracy of all tasks. Fig-
ure 1(a) shows the network instances having identical architecture
but different weights.

2.2 Task Graph Generation

Task Graph, Block, and Path. Tasks in a multitask learning sce-
nario typically share their first few layers since layers closer to the
input tend to encode simpler basic patterns which are the building
blocks for similar inference tasks. For example, early layers of an au-
dio classifier for human voice encodes phonemes and morphemes
that are building blocks to downstream tasks such as keyword
spotting, speech recognition, and sentiment analysis.

Different pairs of tasks may share different number of layers de-
pending on how similar the tasks are. In Antler, this is represented
by a tree-like structure, which we call a task graph, as shown in
Figure 1(b). Each rectangular box in the figure represents a block
which consists of one or more layers. A path from the root (i.e., the
leftmost block) to a leaf (i.e., one of the rightmost blocks) corre-
sponds to one neural network inference task. Notice that a block
may be shared by two or more neural networks.

Task Graph Generation. Antler analyzes the affinity between the
network instances to form a task graph that has optimal sharing of
blocks between tasks. Compact task graphs are generally desirable
since they require less storage, save time and energy by avoiding
repeated computations, and take advantage of multitask learning
such as reduced overfitting and knowledge transfer which is fa-
cilitated by the shared network structures. Compact task graphs,
however, generally have less network capacity due to less number
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of parameters, which limits their ability to accurately classify large
and complex data. Antler finds an optimal task graph that balances
these two opposing forces. All tasks are re-trained using [42].

2.3 Task Execution Order

Task Graph Execution Process. In memory-constrained systems,
network weights and parameters corresponding to one or more
layers are brought into the main memory from the non-volatile
storage (e.g., flash) prior to the execution of those layers. Hence,
the cost of executing the tasks in a task graph depends not only
on the number of blocks the task graph contains but also on how
often each block is brought into the main memory for execution.

In Antler, memory is statically allocated in the RAM having the
size of the common network architecture. Prior to executing a task
𝜏𝑖 , its weights and parameters are loaded into the main memory to
initialize the common network architecture. Since tasks in Antler
share blocks, Antler skips loading a block that is already in memory
in order to reduce the read/write overhead. Additionally, intermedi-
ate results after executing each block are cached in memory buffers
(one buffer after each block) to avoid repeated computation.

Optimal Task Execution Order. Since in-memory blocks are not
reloaded or re-executed if the next task needs them, and since dif-
ferent pairs of tasks generally share different number of blocks, the
order in which tasks are executed affects the total cost of executing
all tasks. In Figure 1(c), the overhead of switching from one task to
another is represented by a weighted complete graph whose nodes
represent tasks, and weights 𝑐𝑖, 𝑗 on each edge represent the cost
of switching between tasks. Finding the least cost ordering of the
tasks is therefore equivalent to finding a least-cost Hamiltonian
cycle (shown with arrows) on this graph [34].

Furthermore, tasks may have precedence constraints and condi-
tional dependencies between them. These add additional constraints
on their execution order. Antler finds an optimal ordering of tasks
for a given task graph where tasks may have ordering constraints.

3 TASK GRAPH GENERATION
We describe how task graphs are generated from the network in-
stances obtained after the preprocessing step.

3.1 Quality of a Task Graph

Task Affinity. Task affinity refers to the degree at which two tasks
are similar in their data representation [7, 20, 42]. For a pair of tasks
in Antler, we choose D layers, which are referred to as the branch
points, and measure the similarity of outputs of the two networks
at these branch points over a subset of K random samples from the
dataset. Computing task affinity is a two-step process:

Step 1 – Each task is profiled using K data samples. At each
branch point, for all pairs of samples, the dissimilarity of their
representations is computed using inverse Pearson’s correlation
coefficient (1 - Pearson correlation) [7, 20, 42] to obtain a D × K × K
dimensional tensor. This tensor is called Representation Dissim-
ilarity Matrix (RDM) and is flattened into a vector that encodes
the data representation profile of a task. Each task must use the
same number of samples to ensure that the RDMs have the same
dimensions. The process is repeated for each task.

Lowest Variety

𝜏1
𝜏2
𝜏3

𝜏𝑛
Highest Variety

𝜏1
𝜏2
𝜏3

𝜏𝑛

Figure 2: Variety score illustration: The left task graph puts all tasks
in one group, and thus the inter-task dissimilarity within the group
is the highest. The right task graph puts each task in its own group,
and thus the inter-task dissimilarity within each group is the lowest
(zero).

Step 2 – Affinity score for each pair of tasks is computed. At
each branch point, for all pairs of tasks, the similarity of their data
representation profile tensors is computed using Spearman correla-
tion coefficient [7, 20, 42] to obtain a D × n × n dimensional matrix
where n is the number of tasks. Spearman correlation captures the
nonlinear relationship between data representations. This matrix
encodes the similarity between each pair of tasks at each branch
point. This information is used later when tasks are grouped to
form affinity-aware task graphs.

“Variety” Score of Task Graphs.We extend the definition of task
affinity to task graphs. The subtree rooted at each branch point
of a task graph contains a subset of tasks that share one or more
blocks. In other words, all the blocks from the root of the graph to
the root of the subtree are shared by all tasks that are on the leaf
of the subtree. At the root of the subtree, tasks diverge and follow
different paths. We quantify this using variety score.

We define variety score for the tasks under each branch point as
the averagemaximum dissimilarity score over all pair of tasks under
that branch point. The variety score quantifies the dissimilarity or
misfit within tasks under each branch point. The overall variety
score of a task graph is the sum of variety scores at all branch points.
Computing the variety score of a task graph is a two-step process:

Step 1 – Variety score at each branch point is computed using
Equation 1, where S𝜌,i,j denotes the affinity between tasks 𝜏i and 𝜏j
at branch point 𝜌 , ck denotes the k-th child branch, and m denotes
the total number of child branches.

v𝜌 =
1
m

[ m∑︁
k=1

max
i,j∈ck

(
1 − S𝜌,i,j

) ]
(1)

Step 2 – Variety score, v𝜌 from all branch points are summed to
obtain the variety score Vg for the task graph:

Vg =
∑︁
𝜌

v𝜌 (2)

Although we use affinity, a similarity metric, to quantify the
similarity between two tasks, we use variety score, a measure of
dissimilarity, to quantify a task graph’s quality. This may seem
counter-intuitive, but this is similar to intra-cluster distance in
clustering algorithms that measure a cluster’s impurity.

3.2 Tradeoff Analysis
Task graphs with low variety scores are desired as variety score
tends to correlate with inference accuracy inversely [7]. However,

3



the lower the variety score of a task graph is, the higher its time,
energy, and storage overhead is.

For example, the task graph in Figure 2 (left) has the highest
variety score — all tasks are in one group. This is the most compact
representation for any task set and has several benefits such as the
least storage requirement and the least time and energy overhead
when switching tasks. However, since these tasks share almost
all layers, the likelihood of individual task performing accurate
inferences is low.

On the other hand, the task graph in Figure 2 (right) has the
lowest variety score — each task forms its own group, has the max-
imum time, energy, and storage overhead (as no blocks are shared),
but since each task retains its weights, the inference accuracy is
likely to be relatively higher.
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Figure 3: Tradeoff between variety score and execution cost.

Empirical Tradeoff Curve. Figure 3 shows this tradeoff using
empirical data obtained from one of our experiments. We define
five image classification tasks on the dataset [23] and use a five-
layer CNN having 2 convolutional and 3 fully-connected layers as
the common network architecture. We generate all possible task
graphs, compute their variety scores, estimate their execution costs,
and note their sizes.

To draw the tradeoff curve, we vary the maximum model size
budget, and for each budget, we pick the task graph having the
lowest variety score andwhose size is within the budget. The variety
score and the execution cost of that task graph are normalized and
plotted on the Y-axis. Thus, we get trend lines for variety score and
execution cost.

We observe that although an increased model size budget allows
us to have a task graph with a lower variety score, it comes at
the cost of increased execution overhead. To balance these two
opposing goals, Antler uses the following formula to decide the
optimal model size budget:

𝛼 × Vg + (1 − 𝛼) × Cg (3)

where Vg and Cg denote normalized variety score and execution
cost, and 𝛼 is a hyperparameter that controls their relative strengths.
In our experiments, we set 𝛼 = 0.5.

3.3 Task Graph Generation Algorithm
Given n individually trained neural networks having the same
architecture, generating the task graph is a four-step offline process:

Step 1 – For each pair of tasks, their affinity score is computed
at D branch points to obtain a D × n × n matrix.

Step 2 – The set of all task graphs containing n tasks, GT (n)
is generated through a recursive process. For every task graph

g ∈ GT (n − 1), where g contains n − 1 tasks, we generate Λ(g) new
task graphs, each containing n tasks. Λ(g) denotes the number of
non-leaf internal node of g. This is because the n-th task can only
branch out from one of the non-leaf internal nodes of g.

Step 3 – For each task graph, g ∈ GT (n), its variety score, model
size, and execution cost are estimated. The variety score is obtained
using Equation 2. The execution cost is estimated from empirical
measurements of the cost of executing each block of the common
network architecture. Execution cost estimation also requires the
optimal execution order of the tasks, which is obtained using the
algorithm described in the next section.

Step 4 – The variety score vs. execution cost tradeoff curve is
computed. The task graph ĝ satisfying Equation 3 is selected and
retrained using [42].

4 OPTIMAL TASK EXECUTION ORDER
We describe how Antler achieves optimal task ordering for a given
task graph which is an NP-complete problem.

4.1 NP Completeness
Since a task can switch to any task, a tour that contains each task
exactly once can be constructed. The total cost of the tour is the sum
of switching cost, ci,j corresponding to the edge (𝜏i, 𝜏j). Finally, we
determine if the cost is minimum. This is completed in polynomial
time. Therefore, the task ordering problem is in NP.

To prove NP-hardness, we take an instance of Hamiltonian cy-
cle [19], G(V, E) and construct an instance of task ordering problem.
We construct a complete graph G′ (V, E′), where we define 𝐸′ as
E′ = {(u, v) |u, v ∈ V, i ≠ j}. Note that G′ is not a task graph but
rather a complete graph whose nodes are the tasks from the given
task graph and edges are the cost of switching between tasks. We
define a cost function as:

𝛾 (u, v) =
{

0, if (u, v) ∈ E
1, otherwise

(4)

Using the cost function above we can argue that if a Hamiltonian
cycle exists in G, that cycle will have a cost of 0 in G′ by construction.
In other words, if G has a Hamiltonian cycle, we have an ordering
of tasks of 0 overhead.

Conversely, we assume that G′ has a tour (i.e., an ordering of
tasks) of cost at most 0. Since edges in E′ are 0 or 1, each edge on
the tour (i.e., each task switching overhead on the chosen ordering
of tasks) must be of cost 0 as the cost of the tour is 0. Therefore, the
tour contains only edges in E.

This proves that G has a Hamiltonian cycle if and only if G′ has
an ordering of tasks of at most 0 overhead.

4.2 Task Execution Order

Significance. Task graphs provide a compact representation of
tasks but do not explicitly impose any order for executing the tasks.
We observe that not all n! execution orders of n tasks cost the same
as different pairs of tasks in a task graph generally share different
number of blocks. Figure 4 shows an example task graph and the
cost of task switching is shown on the weighted complete graph on
its right. For simplicity, we assume the cost of loading and executing
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each block is 1 unit. We observe that executing the tasks in the or-
der: 𝜏2 → 𝜏1 → 𝜏3 → 𝜏5 → 𝜏4 incurs significantly higher overhead
when compared to the optimal order: 𝜏1 → 𝜏5 → 𝜏2 → 𝜏3 → 𝜏4.

𝜏1
𝜏2
𝜏3

𝜏5

𝜏4

3
𝜏1

𝜏2 𝜏3

𝜏4 𝜏5

3
3 3
1

1 2
1
2
2

Figure 4: Switching cost is different for different task pairs.

Cost Matrix. The cost matrix Cn,n is an n × n matrix, in which,
each entry ci,j denotes the additional cost of loading and executing
task 𝜏j, given that the last executed task was 𝜏i. These values are
obtained empirically by measuring the time or energy overhead of
switching between all pairs of tasks. The cost matrix explains why
task execution order matters. If all entries of the cost matrix were
the same, the execution order of the tasks would not matter. This
may only happen in extreme cases when tasks are too similar (i.e.,
they share all intermediate layers) or too different (i.e., they share
nothing). The cost matrix is used to find the optimal execution
order of the tasks.
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4.3 Optimal Task Execution Order
Given a set of n tasks, 𝜏 = {𝜏1, ..., 𝜏n} and cost matrix, Cn,n, our goal
is to find an optimal ordering of the tasks so that the total cost of
executing the task set is minimized.

Mathematical Formulation. We define a binary variable xij to
denote whether a task switching happens from 𝜏i to 𝜏j:

xi,j =

{
1, if a task switch happens from 𝜏i to 𝜏j
0, otherwise

(6)

The task ordering problem is formulated as the following integer
linear programming problem:

minimize
n∑︁

i=1

n∑︁
j=1,j≠i

ci,jxi,j

subject to
n∑︁

i=1,i≠j
xi,j = 1 j = 1, · · · , n

n∑︁
j=1,j≠i

xi,j = 1 i = 1, · · · , n∑︁
i∈Z

∑︁
j≠i,j∈Z

xi,j ≤ |Z| − 1 ∀Z ⊊ {1, . . . , n}, |Z| ≤ 2

where the objective function minimizes the overall task switching
overhead for all tasks. The first two constraints ensure that tasks

are executed only once. The last constraint ensures that there is
no subset that can form a sub-tour and thus the final solution is a
single execution order and not a union of smaller sub-orders [34].

4.4 Inter-Task Dependencies
We have thus far discussed the scenario where tasks are executed in
an orderly manner. In many real-world systems, however, there are
additional constraints that affect task execution decision: precedence
and conditional constraints.

Precedence Constraints. These constraints dictate that certain
tasks (prerequisites) must be executed prior to some other tasks
(dependents). These constraints are static. They are determined
at the design time of the classifiers. We express these constraints
using directed edges on a graph as shown in Figure 5(a) where each
node, 𝜏i denotes a task and each edge, (𝜏i, 𝜏j) denotes a precedence
constraint such that 𝜏i must finish before 𝜏j starts.

𝑐𝑖,𝑗𝜏𝑖 𝜏𝑗

(a) Precedence Constraint

𝑐𝑖,𝑗× 𝑝𝑖,𝑗𝜏𝑖 𝜏𝑗

(b) Conditional Constraint

Figure 5: Precedence and conditional constraints are expressed by di-
rected edges. Unlike precedence constraints, conditional constraints
affect the task switching cost.

To account for the precedence constraints, we augment the op-
timization problem described in Section 4.3 with additional con-
straints.We assume a given set of precedence constraints, P of tuples
of tasks, (𝜏i, 𝜏j) ∈ P ⊆ |𝜏 | × |𝜏 |, for which, the task, 𝜏j must start af-
ter 𝜏i finishes. For each task-pair, (𝜏i, 𝜏j), we define the remaining
execution time to finish 𝜏j, given that 𝜏i has already finished, as di,j.
To formally incorporate precedence constraints, we define a binary
variable:

si,t =

{
1, if 𝜏i starts by time t
0, otherwise

(7)

The following constraint ensures the inclusion of all precedence
constraints: ∑︁

t′≤t
si,t′ ≥

∑︁
t′≤t+di,j

sj,t′ (8)

Conditional Constraints. These are a special type of precedence
constraints where the decision to execute a dependent task depends
on the outcome of a prerequisite task. These constraints manifest
dynamically at runtime when a prerequisite task finishes and its
inference result is available.

Conditional constraints are also represented by directed edges.
However, these constraints being dynamic, to accommodate their
effect on the task switching cost (which in turn affects the task
ordering), we utilize their probability of execution. We estimate
this probability offline over a dataset by counting the fraction of
the time a dependent task is executed after its prerequisite task
finishes. We assume a given set of conditional constraints, R of
triplets (𝜏i, 𝜏j, pi,j) ∈ R ⊆ |𝜏 | × |𝜏 | × [0, 1], where (𝜏i, 𝜏j) ∈ P and pi,j
is the probability of executing 𝜏j after 𝜏i finishes. This probability
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is used to determine the expected cost of switching to a dependent
task as shown in Figure 5.

Since conditional constraints are a special type of precedence
constraints, we include the same linear constraints as in Equation 8
to account for them.

4.5 Solving the Optimization Problem
We describe two alternative solvers which run offline on a high-end
machine.

Brute-force Solver. In extremely resource-constraint systems, we
expect fewer inference tasks. In such cases, a brute-force solver
would suffice that generates all possible permutations of the tasks,
discards the permutations that violate precedence constraints, and
selects the best ordering that maximizes a fitness score. We de-
fine fitness score for each permutation that does not violate the
precedence constraints as the sum of task-switching overheads:

f (𝜋1, · · · , 𝜋n) =
∑︁

1≤i<n
c𝜋i,𝜋i+1 (9)

where, 𝜋i refers to the task that executes at position i.
For conditional constraints, we adjust the fitness score to account

for the probabilistic execution of dependent tasks by multiplying
the probability to the switching cost:

f (𝜋1, · · · , 𝜋n) =
∑︁

1≤i<n
p𝜋i𝜋i+1 c𝜋i,𝜋i+1 (10)

The complexity of the brute-force solver is O(𝑛!).
Genetic Algorithm Solver. Although a brute-force solver is rea-
sonably fast for a small number of tasks, the solver is repeatedly
invoked during the task graph generation step – once for each
task graph as they are enumerated – which as a whole takes sig-
nificant time. Furthermore, in the future, the number of inference
tasks running on low-resource systems could increase significantly
as technology advances. Hence, we propose an efficient, scalable,
genetic algorithm-based solver [1, 2, 33, 41, 46] to solve the task or-
dering problem. The advantage of adopting genetic algorithm is that
the same solution framework is customized to solve all cases of the
optimal task ordering problem, i.e., with and without precedence
and conditional constraints.

The algorithm begins with a set of individuals or candidate so-
lutions which is called a population. We define the j-th individual
as 𝜋 j = (𝜋 j

1, 𝜋
j
2, . . . , 𝜋

j
n), where 𝜋

j
i is the task that executes at the

i-th position. We define the fitness of each individual using Equa-
tion 9 (or, Equation 10 for conditional constraints). At each round
of the algorithm, we select the best K pairs of individuals based
on their fitness scores; and for each pair, we randomly choose a
crossover point, k ∈ {1, 2, · · · , n} and swap the first k elements of
the pair to generate their offspring; and for each offspring, we per-
form mutation by swapping the values at two randomly chosen
indices, {𝑚1,𝑚2},𝑚1,𝑚2 ∈ {1, 2, . . . , 𝑛}; and finally, we discard all
individuals that are not a valid ordering. This whole process is
repeated until we reach a point when the fitness score of the best
solution does not improve anymore. The complexity of the genetic
algorithm solver is O(𝑛𝑘𝑝), where 𝑛 is the number of tasks, 𝑘 is
the number of generations, 𝑝 is the population size.

5 EVALUATION
This section describes the evaluation of the proposed algorithms as
well as the end-to-end system performance.

5.1 Experimental Setup

Dataset and Network Architecture. We use the datasets and
network architectures used in recent multitask inference literature
for low-resource systems [22, 25, 26]. Table 1 provides a summary.
The network architecture shown on the table (rightmost column)
is used as the common network architecture in Antler and each
task on a dataset corresponds to recognizing one class. All datasets
have 10 tasks, except for HHAR which has six. We use 80% of the
data for training and 20% for testing.

Modality Dataset Architecture
Image MNIST LeNet-5

F-MNIST LeNet-5
CIFAR-10 DeepIoT
SVHN Neuro.Zero
GTSRB LeNet-4

Audio GSC-v2 KWS
ESC Mixup-CNN
US8K TSCNN-DS

IMU HAAR DeepSense
Table 1: Datasets and Network Architectures.

Baselines for Comparison.We use four baselines for comparison:
YONO [22], NWV [25], NWS [26] and Vanilla. The first three are the
state-of-the-art. Vanilla refers to independently trained classifiers
running sequentially on the system. We use NWV and NWS in
both 16-bit and 32-bit experiments. Since their source codes are not
available, we use our own implementation and cross-check with
their reported results to ensure that they are consistent with ours.
We use YONO only in 32-bit experiments. Since our 32-bit hardware
platform is identical to YONO’s, we use the reported results from
their work.

(a) 16-bit Custom (b) 32-bit Por-
tenta

Figure 6: Hardware platforms.

Evaluation Platforms.We use the two platforms listed on Table 2:
a 16-bit custom made MSP430FR5994-based system and a 32-bit
STM32H747. Data samples are pre-loaded into the non-volatile
memory from where they are read and executed. We measure the
time and energy consumption by connecting a 100Ω resistor in
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Platform Custom PCB STM32H747
CPU MSP430FR5994 ARM Cortex-M4/M7

16-bit, ≤16MHz 32-bit, ≤480MHz
Memory 8KB SRAM 1MB SRAM

512KB+2MB FRAM 2MB eFlash
Power 1.8V - 3.6V 3.3V

118 uA/MHz (active) 100 mA
Table 2: Hardware specification.

series with the board and by measuring the voltage across the
resistor with Analog Discovery 2. We run all off-line experiments
on a server having 12 Intel i7-7800X CPUs and 32GB RAM.

5.2 Algorithm Scalability Analysis
This section evaluates the task graph generation and task ordering
algorithms.

Effect of Network Structure.We evaluate how different network
structures might affect the task graph generation algorithm. Ideally,
if two tasks are correlated, they should have high task affinity
irrespective of the network structure used by Antler.We empirically
test this hypothesis by comparing inter-task similarity matrices
corresponding to three different common network architectures.
For each network, we first calculate RDMs at each layer and use
the averaged RDM as the final representation for each task. Then,
the affinity score is computed for each pair of tasks using their
corresponding RDM. We use CIFAR-10 [21] dataset and vary the
size and number of layers of the common network architecture.
The results are shown in Figure 7.
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Figure 7: Inter-task affinity for different networks.

We observe that the relative inter-task similarity is consistent
irrespective of the choice of networks. This demonstrates that the
task graph generation algorithm is not sensitive to the choice of
common network architecture.

Effect of Number of Tasks. We evaluate how the number of
tasks affects the inference accuracy. Since we target low-end micro-
controllers, we explore the effect of the number of tasks for up to
20 tasks. We use both image and audio datasets (GTSRB [39] and
GSC-v2 [43]). The results are shown in Figure 8.

We observe that the image classification task has almost no
accuracy degradation as the number of tasks increases. The audio
classification task incurs a very small accuracy decrease of -2.7%.

Effect of Branch Points. We evaluate the effect of branch points
by performing a sensitivity analysis of variety and execution cost.
We use execution time as the cost. We vary the number of branch
points, BP = {3, 5, 7}. Results are shown in Figure 9(a) and 9(b).
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Figure 8: Effect of number of tasks.
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Figure 9: Effect of number of branch points.

We observe that more branch points improve the variety score
(lower is better) but worsen the overhead. This is because more
branch points decompose and group tasks at a finer granularity
which causes more tasks to branch out at deeper layers and thus
decreases task-switching efficiency.

Variety Score vs. Execution Cost Trade-off. Figure 10 shows
the trade-off between variety score and execution cost for eight
datasets. We compare three network size budgets: two extreme
cases of minimum and maximum budget and a trade-off budget
where variety and cost trend lines intersect. We observe that a low
budget favors execution cost, a high budget favors variety, and the
trade-off budget balances the variety score and execution cost.

Effect of New Data Points. In real-world machine learning sce-
narios, after the system is deployed, it may encounter new data that
have a different distribution than the training data. The new data
points may change one or more tasks in such a way that it affects
the inter-task affinity. As a consequence, the task graph constructed
during the offline phase may no longer be optimal. We conduct an
experiment where we create this scenario by randomly choosing
a subset of the training data to construct the task graph and then
comparing it with a task graph that is constructed using the entire
training dataset. Figure 11 shows the result.

We observe that as long as at least 40% of the training data is used
to construct the task graph, it remains pretty stable. The relative
affinity between different pairs of tasks beyond this point does not
change so much that it can alter the task graph. This experiment
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Figure 10: Variety score vs. execution cost tradeoff.
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Figure 11: Effect of new data points.

also reveals that when an inadequate amount of data is used, the
constructed task graph is not optimal. In this case, Antler’s time
and energy efficiency will also be suboptimal.

Performance of Genetic Algorithm. We evaluate the perfor-
mance of the genetic algorithm for task ordering. We use a popular
public dataset for Traveling Salesperson Problems (TSP) called
the TSPLIB [36] and repurpose it for task ordering problems. This
dataset already contains test cases that have precedence constraints.
To include conditional constraints, we add weights to the graph’s
edges. Table 3 compares our results with the ground truth for all
three cases of task ordering problems. Our result is identical to the
ground truth for all cases except for a few conditional constraint
cases with a 5% deviation.

5.3 Comparison with Baseline Solutions

Execution Time and Energy Cost. We compare the execution
time and energy consumption of Antler against the baselines in
Figure 12 and Figure 13, respectively. The Y-axis shows the total ex-
ecution time (or energy) to execute all tasks for an input. We report
results for both 16-bit and 32-bit systems. The energy consumption
is estimated by connecting a resistor in series and then measuring
the voltage across the resistor and the system separately. Since

Variant Dataset Node/ Pre/Cnd Optimal Antler
Regular FIVE 5/0/0 19 19

P01 15/0/0 291 291
GR17 17/0/0 2085 2085

Precedence ESC07 9/6/0 2125 2125
ESC11 13/3/0 2075 2075
br17.12 17/12/0 55 55

Conditional ESC07 9/6/3 982 982
ESC11 13/3/3 1901 2000
ESC12 14/7/3 1398 1423

Table 3: Evaluation of genetic algorithm for task ordering.
Node/Pre/Cnd represent the number of nodes, precedence, and con-
ditional constraints, respectively. The last two columns represent
the cost of the optimal result and that of Antler. The lower the better.

inference time and energy on microcontrollers is pretty stable, the
error bars are practically zero in these figures.

We observe that while the general trend remains the same in
both systems, the execution time on STM32H747 is 100X faster. On
both systems, Antler’s execution time is the lowest. This is because
Antler leverages the similarity of tasks and reuses the intermediate
results to reduce the execution time by 2.3X – 4.6X which baseline
solutions do not. Even though NWV and YONO perform complete
in-memory inferences and have zero switching overhead, they fall
short of Antler as the cost of repeatedly executing shared subtasks is
higher, especially when it involves convolution layers. We observe
similar pattern in energy consumption. Overall, Antler saves 56%–
78% energy compared to the baselines.
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Figure 12: Comparison of execution time.

Breakdown of Time and Energy Overhead. We breakdown the
total time and energy cost into two parts: inference-only cost that
corresponds to in-memory execution of the networks and switch-
ing overhead that corresponds to loading weights from external
memory. We compare Antler with Vanilla and NWS since the other
two (NWV and YONO) do not use external memory and thus have
no switching cost. Results are shown in Figure 14.
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Figure 13: Comparison of energy consumption.
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Figure 14: Time and energy cost breakdown.

The Y-values in Figures 14(a) and 14(b) are averaged over all
datasets. We observe that 32-bit STM32H747 has very little weight
reloading overhead (the striped area on top of each bar is almost
invisible) for both time and energy breakdown. The time and energy
cost related to weight reloading in NWS is also negligible as it only
has around 7% of the total weights stored in external memory.
Antler’s time and energy cost related to weight-reloading is 54%-
56% less than Vanilla.

Inference Accuracy. We compare the inference accuracy of all
systems in Figure 15. Examples of task graphs are shown in Fig-
ure 16. The accuracy is averaged over all tasks. Antler’s inference
accuracy is similar to YONO, NWS, and Vanilla within a margin
of ±3% deviation. Recall that Antler’s target is to reduce the time
and memory cost of inference while achieving a high accuracy. In
this case, all classifiers show reasonably high accuracy of over 90%,
except for NWV whose accuracy does not scale with the number
of tasks. YONO does not use the later five datasets and thus its
accuracy could not be included in Figure 15 for those datasets.
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Figure 15: Comparison of inference accuracy.
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Figure 16: Example task graphs for different modalities.

Memory Efficiency.We measure the total memory consumption
of all tasks for each baseline and summarize in Table 4. We observe
that Antler consumes more memory than NWS, NWV and YONO.
This is because NWV and YONO perform complete in-memory
execution and thus they are limited by the size of the RAM. Unlike
them, Antler and NWS are able to utilize external memory and put
no hard restrictions on the total size of the tasks. Antler consumes
significantly lessmemory than Vanilla since Antler reducesmemory
consumption by exploiting the task affinity.

System Vanilla Antler NWS NWV YONO
Memory (KB) 1328 587 213 140 114

Table 4: Comparison of memory consumption.

Knowledge Distillation. We investigate a special scenario where
the original training dataset is not available, and only pre-trained
models are provided. We employ knowledge distillation to deal
with this case. The pre-trained model serves as the teacher model,
and our binary classification tasks are the student model (denoted
by Stu-Distilled). We also train the same student model on the
original dataset (denoted by Stu-Labeled) to show the difference
between learning from the teacher model and from the original
dataset. For a comprehensive investigation, we choose three popular
network architectures, i.e., VGG,MobileNet, and ResNet, and CIFAR-
10 dataset. The results are shown in Figure 17. We observe that with
knowledge distillation, we achieve similar accuracy as in training
from the original training dataset.
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Figure 17: Effect of knowledge distillation on accuracy.

6 REAL-WORLD DEPLOYMENT
We deploy Antler in two real-world multitask learning scenarios
that involve audio and image classification tasks.

6.1 Multitask Audio Inference System

InferenceTasks.We implement five audio-based tasks: 1) a speaker
presence detection task (𝜏0) which detects if there is human voice
in the audio, 2) a command detection task (𝜏1) which detects eleven
commands {yes, no, up, down, go, stop, left, right, on, off, Alexa}, 3)
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Figure 18: Deployment Setup.

a speaker identification task (𝜏2) which identifies who is speaking
(five speakers), 4) an emotion classification task (𝜏3) which classifies
the audio into three emotions {positive, negative, neutral}, and 5) a
distance classification task (𝜏4) which tells whether the speaker is
close to or far from the device.
System Setup. We use the 16-bit custom MSP430FR5994 [14] to
conduct the audio-based experiments as shown in Figure 18(a). Au-
dio signal is sampled at 2KHz and converted to a feature map having
a window-length of 128ms and a stride of 64ms after performing
the FFT.
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Figure 19: Multitask inference graphs.

Data Collection and Network Training. Five volunteers (four
male and one female) participate in this experiment. We have fol-
lowed Institutional Review Board (IRB) approved protocol to con-
duct this study. We collect 15 samples for each task from each
volunteer. We use 80% data for training and 20% for testing from
each participant. We design a 5-layer CNN having 2 convolutional
and 3 dense layers and pre-train it on [43] prior to training on our
own dataset. We use 3 branch points and 𝛼 = 0.5.

6.2 Multitask Image Inference System

Inference Tasks. We implement four image classification tasks: a
human presence detection task (𝜏0) which detects human faces in
an image, a mask detection task (𝜏1) which detects if the person is
wearing a mask, a person identification task (𝜏2) which recognizes a
person’s face (5 volunteers), and an emotion recognizer (𝜏3) which
classifies three emotions as in the audio inference system.

SystemSetup.Weuse off-the-shelf 32-bit STM32H747H7 as shown
in Figure 18(b). Images are taken with a HM01B0 camera module
and has the dimensions of 64×64 pixels.
Data Collection and Network Training. Data collection and
network training processes are identical to the audio inference
system except for the neural networkwhich is a 7-layer CNN having
3 convolutional and 4 dense layers and is pre-trained on [9].

6.3 Evaluation Results

TaskDecomposition andGrouping. Figure 19 shows task graphs
for both applications. There are 4 blocks in each task graph (for 3
branch points). One of the blocks (second block) contains multi-
ple layers. This is unlike task graphs observed earlier in Section 5,
where deeper layers are lumped into the same block. Overall, hav-
ing more layers lumped in earlier blocks decreases execution cost
but may decrease accuracy as well. Antler finds a trade-off point
between the two to optimize both accuracy and cost.

We observe that in the audio inference graph, Figure 19(a), 𝜏4 is
isolated from all other tasks, which is logical since 𝜏4 is a distance
classification task which relies on very different audio features
compared to human voice classification tasks. Likewise, in the
image inference graph, Figure 19(b), 𝜏0 is isolated since it represents
human presence detection task which requires very different facial
features compared to other tasks.

Task Dependency and Ordering.We include a precedence con-
straint in the image inference system that the presence detection
task (𝜏0) must be executed before any other task. Additionally, in the
audio inference system, we make presence detection a conditional
constraint such that other tasks are executed at 80% probability.

The ordering of tasks in audio and image inference systems are:
𝜏0 → 𝜏3 → 𝜏4 → 𝜏2 → 𝜏1 and𝜏0 → 𝜏3 → 𝜏1 → 𝜏2, respectively, and
they are just one of several orderings that yield the best perfor-
mance for these tasks.

Inference Time and EnergyConsumption.We evaluate Antler’s
execution time and energy consumption for three cases: Antler hav-
ing no constraints, Antler-PC having precedence constraints, and
Antler-CC having conditional constraints, and compare their perfor-
mance with the Vanilla system. Figure 20 shows that Antler yields
2.7X – 3.1X reduction in time and energy costs and the results are
consistent across both systems. Antler-PC has the same overhead
as Antler because there are only four tasks and the execution order
with precedence constraint is already in the optimal ordering. For
Antler-CC, overhead decreases as tasks are skipped occasionally
based on the conditional probability.
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Figure 20: Execution time and energy consumption.
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Inference Accuracy and Memory Usage. Figure 21 shows the
average accuracy of all tasks for both systems. We observe that
in the audio inference system, except for the command detection
task, all tasks have over 90% accuracy. This is because the command
detection task is the hardest of these tasks with eleven class labels.
The accuracy of both Antler and Vanilla are very similar within an
average deviation of ±1%.

0 1 2 3 4
Tasks

10
25
40
55
70
85

100

Ac
cu

ra
cy

 (%
)

Vanilla Antler

(a) Audio Inference System

0 1 2 3
Tasks

10
25
40
55
70
85

100
Ac

cu
ra

cy
 (%

)
Vanilla Antler

(b) Image Inference System

Figure 21: Inference accuracy of audio and image classifiers.

The memory usage of both systems are shown in Table 5. We
observe that the memory usage of Antler is approximately half of
Vanilla’s, which is consistent with earlier results from the dataset-
driven experiments in Section 5.

System Vanilla Antler

Memory (KB) Audio 397 202
Image 445 222

Table 5: Memory usage.

7 DISCUSSION

Fine-Grained Task Decomposition. Although Antler uses only
three branch points to in our experiments, it can be easily extended
to have more fine-grained decomposition to form more compact
task graphs. Such fine-grained decomposition of tasks might be
necessary when the number of tasks is above 20.

Optimization Alternatives. Antler’s task graph formation and
task ordering are formed as two independent optimization problems
and solved independently. We choose this design to make task
ordering flexible so that dynamic constraints can be handled flexibly.
An alternative approach such as joint optimization of task graph
formation and execution order determination is possible but the
downside is that if task dependencies change, the optimization
problem has to be solved again.

Generalization to Other Systems. Although Antler is motivated
by the constraints of a low-resource system, some of the techniques
such as affinity-aware task graphs that execute under constraints
and optimal ordering of tasks should apply to server-grade larger
multitask inference systems as well. Cloud-based inference systems
that execute more complex and larger number of inference tasks,
exploiting task affinity could help reduce a server’s response time.

Generalization to Other Workloads. Although Antler’s scope is
limited to neural networks, the concept of tasks, task affinity, and
task graphs are generalizable to any workload where a task can
be factored into subtasks, compared, and merged. Antler is readily
applicable to many non-neural classifiers such as decision tree and
random forest that process data in stages.

Improvement Over Antler. Antler’s advantage over the state-
of-the-art in-memory multitask learning systems [22, 25] is its
ability to reduce time and energy cost while offering the same
level of accuracy. Antler, however, consumes more memory than
these systems. We envision that Antler will inspire new techniques
that will not only reduce time and energy overhead of multitask
inference on embedded systems but also improve inference accuracy
and perform complete in-memory execution of tasks.

These devices will be self-contained, long lasting, and feature-
packed with several on-device classifiers.

8 RELATEDWORK

Single Network Compression. This class of algorithmic tech-
niques refer to approaches that take one DNN at a time and com-
press it down to a desired size by employing a wide variety of
methods such as knowledge distillation, low-rank factorization,
pruning, quantization, compression with structured matrices, net-
work binarization, and hashing [3, 4, 11, 12]. The disadvantages of
this technique are: first, there is no cross-DNN knowledge sharing
or joint compression that trains multiple DNNs together; second,
since each DNN is compressed individually using different com-
pression methods, this technique is not scalable and they do not
have the advantages of multitask learning; third, a significantly
compressed DNN does not run nearly as significantly faster since
most parameters are pruned in the dense layers while convolutional
layers consume most computation time [12].

Multiple Networks Compression. This class of algorithmic tech-
niques compress multiple DNNs together; e.g., PackNet [31] com-
presses multiple DNNs to a single DNN with iterative pruning of
redundant parameters in DNNs to remove weights that can be used
by other tasks. The number of DNNs that can participate in the pro-
cess, however, is limited when free weights fall short as the number
of DNNs increase while a single network is maintained. [5] pro-
poses a technique that merges DNNs by integrating convolutional
layers. However, their technique works for two networks only and
it requires layer alignment for merging. Learn-them-all [17] trains
a single network to deal with many tasks simultaneously. However,
choice of a suitable architecture is generally hard for learning all
the tasks apriori. Besides, this requires a large training data from
different types and sources which is a tedious task.

There exists multiple studies on sharing weights among a set
of DNNs, e.g., MultiTask Zipping [13] combines DNNs for cross-
model compression with a layer-wise neuron sharing; Sub-Network
Routing [30] modularizes the shared layers into multiple layers of
sub-networks; Cross-stitch Networks [32] apply weight sharing [6]
after pooling and fully-connected layers of two DNNs. The scope
and methods of weight sharing in these works are limited by the
choice of network architecture and task type.

Most Relevant Works. The three most relevant state-of-the-art
systems to Antler are NWV [25], NWS [26], and YONO [22]. NWV
and YONO propose complete in-memory execution of DNNs on
memory-constrained systems. NWS extends NWV by allowing
some of the high-significance weights into the flash memory to
increase the accuracy of NWV. NWS essentially points out that
complete in-memory packing and execution of DNNs in MCUs
is not accurate. All three approaches fail to leverage the affinity
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among tasks and their dependencies, and thus repeatedly execute
overlapping common subtasks that significant increases the time
and energy cost of multitask inference which is avoided by Antler.

9 CONCLUSION
We envision a future where a wide variety of ultra-low-power
sensing and inference systems will sense and classify every aspect
of our personal and physical world. To realize this vision, we need
to significantly lower the time and energy cost of running multiple
neural networks on low-resource systems while ensuring that their
application-level performance does not degrade. To achieve this
goal, we propose Antler, which is the first system that exploits
the similarity among a set of machine learning tasks to identify
overlapping substructures in them that is combined and executed in
an optimal order to reduce the execution time by 2.3X – 4.6X and the
energy overhead 56% – 78% when compared to the state-of-the-art
multitask learners for low-resource systems.
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