
ABSTRACT

This paper presents RFinder, a handheld RFID localization

system that can accurately localize an in-concrete RFID tag.

Such a system facilitates RFID applications in construction

quality control. However, the challenge wemeet in designing

such a system is to achieve accurate RFID localization in a

compact (e.g., with only one antenna) and mobile form.

To solve this problem, we opportunistically combine the

sensing ability of the RFID and the Inertial Measurement

Unit (IMU) sensor that is widely embedded in most handheld

RFID readers. Specifically, the user just needs to hold the

handheld device and move it in the air. The movement of

the device causes changes in 1) RFID measurement phase,

and 2) motion sensor data (e.g., acceleration) captured by

IMU. We find that if the tag’s direction relative to the tag is

almost not changed, it is possible to establish a correlation

between the velocity calculated from acceleration and that

of the RFID phase, thereby enabling us to localize the tag’s

AoA without the precise position of the antenna. We build a

signal preprocessing and matching workflow to better fuse

the two kinds of data. Experiments show that RFinder can

achieve an 11° 3D AoA estimation accuracy at the range of

2.5m.
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1 INTRODUCTION

Construction quality control is one of the most critical as-

pects of any construction project. Poorly constructed build-

ings not only incur wasted time, resources, and materials for

re-construction but also lead to life-threatening accidents,

such as the collapse of buildings and bridges. It is reported

that in 2021, the collapse of the structure caused 1630 deaths
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Figure 1: The application scenario of RFinder.

in India [1]. One major reason behind these accidents is the

use of unqualified building materials. So we need an effective

and efficient method to achieve life-cycle management for

integrity and safety construction.

In recent years, Radio Frequency Identification (RFID)

technology [21] is evolving as a major technology enabler

for building quality control [5]. Several companies, such

as RFIDHY [29] and SEIKO [27] have proposed RFID tags

that can be mounted on metal and embedded in concrete to

monitor the structural health of the building. Compared with

other identification technologies such as QR code and AirTag

[4], RFID provides the advantage of non-line-of-sight and

battery-free communication, thus is more suitable for build-

ing quality control – by embedding RFID tags into the pre-

fabricated components (PCs)
1
, we can perform an all-process

retrieving of each PC’s information, such as its manufactur-

ing date and quality standards, no matter the PCs are stacked

in the warehouse, shipped on board, or already installed in

the building. Fig. 1 shows an example of RFID-based building

quality management. In this case, PCs released by a certain

manufacturer are found to be potentially unqualified after

the building is completed. In such an RFID-based building

1
Prefabricated components refer to pre-engineered elements of a building

(such as walls, roofs, floors) that are manufactured off-site to enhance

construction efficiency and minimize disruptions on-site.
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Figure 2: An illustration of RFinder’s key idea.

quality management system, RFID localization technique is

leveraged to build a mapping between the prefabricated com-

ponents we see in the physical world to the RFID signal we

have received. Specifically, when querying a tag embedded in

a specific component, all the tags around can response their

information, making it difficult to identify which one is from

the specified component. So, we need an RFID localization to

map the tags with their exact locations. This technology has

significant applications in Building Information Modeling

(BIM[7]). For instance, to accurately model a building, the

positions of the components must be input into the model

to facilitate lifecycle maintenance of the building[30].

However, realizing the above vision requires an RFID lo-

calization system to satisfy the following three requirements:

1) Portable. Since the target PCs can be distributed across

different floors and rooms in a building, the worker has

to walk around the building to query and localize the

tags embedded in the wall. So the proposed localization

method should be compact, portable, and can work even

in mobility scenarios.

2) In-concrete localization. In construction control sce-

narios, tags are usually embedded inside the prefabri-

cated components, which are made of reinforced con-

crete. Since the concrete can largely attenuate and dis-

tort the signal propagating through it, we need a robust

localization method that can work with a weak signal

and non-ideal signal metrics.

3) High accuracy. Since tags are densely deployed inside

the wall (e.g., with a decimeter-level, the dimension of

components is shown in Tab. 1), the localization method

should be accurate enough so that different tags can be

spatially distinguished.

Unfortunately, no system exists today that can realize

all three goals simultaneously. Accurate RFID localization

typically requires bulky antenna arrays or multiple anten-

nas [6, 22, 36–38], which are clearly unavailable on portable

devices. To avoid bulky infrastructures, researchers have

Table 1: Dimensions of common prefabricated components.

prefabricated components thickness (mm) width (mm) height (mm)

external wall panels 100-300 600-3000 2400-3600

internal wall panels 100-200 600-3000 2400-3600

composite floor slabs 120-200 600-2400 3000-12000

solid prefabricated floor slabs 150-250 600-2000 3000-12000

prefabricated columns 300-1000 300-1000 3000-6000

prefabricated beams 200-600 300-1500 3000-18000

L-shaped retaining walls 150-300 1000-4000 1000-6000

prefabricated window sills / 200-500 1000-3000

prefabricated balcony slabs 150-300 1000-2500 2000-5000

considered mounting antennas on mobile robots to emu-

late antenna arrays (i.e., SAR) [3, 23, 31, 32]. However, these
methods require moving the robot and/or tag onwell-defined

trajectories, making them ill-suited for handheld human mo-

bility. To address the above problems, some recent works,

like POLAR [15] and X-AR [8], propose portable or wear-

able localization systems by combining the RFID signal and

the vision signal. Specifically, these systems use a camera

to perform self-tracking and then combine the RFID signal

obtained at different locations or along a known trajectory to

perform accurate localization. However, these systems suffer

the following two problems. First, POLAR localizes the target

leveraging ToF (time-of-flight) of the RFID signal. However,

the speed of the signal changes when it propagates through

the concrete wall, which undermines the ToF and thus leads

to serious localization error. Second, they both use visual-

inertial odometry (VIO) technique to perform self-tracking.

However, VIO technique is sensitive to sudden illumination

changes, fast motions of the user, and other moving objects

in the environment, which are common and inevitable on

construction sites. In Tab. 2 we make a comparison with the

state-of-the-art works. Comparing to other works, RFinder

can be implemented on handheld devices and is also compat-

ible with commercial devices. Additionally, it can adapt to

existing RFID reading protocols and dynamic environments.

To distinguish the position of different components, we re-

viewed relevant standards from Precast/Prestressed Concrete

Institute (PCI)[26] and National Precast Concrete Associa-

tion (NPCA)[24]. We learn about some commonly used typi-

cal dimensions of prefabricated components (Tab. 1). These

components generally have thicknesses ranging from 100 to

300mm, and widths typically ranging from 500mm to several

meters. Some components, such as beams and columns, have

narrower widths. However, these components are typically

spaced further apart, making them easier to distinguish com-

pared to panels and slabs. To achieve effective differentiation,

our average localization accuracy must be within 500mm.

However, simple methods, such as the RSSI-based approach

mentioned in Tab. 1, with an average localization accuracy



Table 2: Comparisons of related works on RFID localization.

Reference Localization Target Accuracy Data Devices Antenna number Frequency bandwidth Portablity

Tagoram[41] Moving luggage < 1cm Phase,RSSI Commercial Devices > 2 Multiple frequencies Fixed

3D-omnitrack[20] Moving tag ≈ 10cm Phase,RSSI Commercial Devices 3 Multiple frequencies Fixed

Tag-Focus[43] Moving tag < 1cm Phase,Image Commercial Reader + Camera 1 Single frequency Fixed

Meta-Sight[40] Static tags < 20cm Phase Customized Antenna Meta-surface Antenna Single frequency Fixed

POLAR[15] Static tags ≈ 10cm Phase,Image Customized Antenna and Readers 4 Multiple frequencies Handheld, Mobile

X-AR[8] Static tags ≈ 10cm Phase,Image Customized Antenna and Commercial Reader 1 Multiple frequencies Wearable, Mobile

RTLS[9] Static tags ≈ 2m RSSI Commercial Devices 4 Single frequency Fixed

Xiao, 𝑒𝑡 𝑎𝑙 .[39] Static tags ≈ 1m RSSI Commercial Devices 4 Single frequency Fixed

RFinder Embedded static tags 35cm Phase,Acceleration Commercial Devices 1 Single frequency Handheld, Mobile

of over 1m, are inadequate for distinguishing the positions

of the components.

We in this paper present RFinder, an RFID localization

technique that achieves accurate and in-concrete RFID lo-

calization in mobility and portable form, using only one

antenna. We achieve this by opportunistically combining

the sensing ability of the RFID and the IMU sensor that is

widely embedded in most handheld RFID readers. We find

that when the user moves, both the inertial data collected

by the IMU sensor and the phase variation collected by the

reader can reflect user’s mobility pattern. As shown in Fig.

2, the IMU captures the user’s movement velocity (denoted

as 𝑣𝑠 ), while the phase variation captures the rate of change

in reader-to-tag distance (termed as radial velocity, denoted

as 𝑣𝑡 ). The angle between 𝑣𝑠 and 𝑣𝑡 is the AoA of the tag’s

signal. By moving the reader along different directions in the

3D space, we can obtain the 3D AoA of the tag’s signal (i.e.,
the polar angle and the azimuthal angle). Then, if we can

measure the antenna-to-wall distance (details can be found

in Sec. 4.1), we can obtain the exact location of the tag on

the 3D spherical coordinate centered at the user.

Note that RFinder is naturally resistant to the impact of

the concrete wall due to the fact that: i) it uses narrowband

signal for localization, thus avoiding the frequency selective

attenuation brought by the concrete wall and reducing the

chances of being interfered with; and ii) it estimates tag’s

AoA by observing the change in phase measurement during

the antenna’s movement, thus the additional phase rotation

and signal loss caused by the concrete wall can be removed

by performing differential on the received signal.

However, the main challenge is that IMU and RFID signals

are sampled at different rates and devices (i.e., IMU at 100-

200Hz and RFID at 50Hz). More seriously, RFID’s sampling

process is unstable and suffers occasional data loss due to

the random channel access protocol [10] used by RFID and

the inevitable variation in wireless channels. So we need a

method to match the two signals in both the time domain

and measurement coordinate.

We address this problem with an advanced data-matching

method base on DTW algorithm. The proposed method can

automatically stretch and scale the data series and finally

find an optimal alignment between them.

Contribution. We make the following contributions:

• We present RFinder, the first to demonstrate a portable

RFID localization system that can accurately localize a tag

inside the concrete wall, using a COTS RFID reader with

only one antenna. RFinder facilitates more effective and

efficient construction quality control.

• We explore the relationship between IMU data and phase

measurement, and based on this we propose an accurate

AoA estimation method. The method is then embedded

into a complete system that overcomes practical chal-

lenges, including the drifting in the IMU sensor and the

misalignment between IMU data and phase measurement.

• We evaluate the performance of RFinder by conducting

comprehensive experiments under various settings. Re-

sults show that the RFinder can provide AoA estima-

tion accuracy within 11
◦
and location error within 0.35 m

within the range of 2.5m.

2 UNDERSTANDING THE SIGNAL PHASE

IN THE CONCRETE STRUCTURE

We start with an analysis of how RFID signals behave as

they propagate inside a concrete wall, and why RFinder is

resistant to the in-concrete propagation of the RFID signal.

At first, we will introduce the main factors that influence

the propagation characteristics of electromagnetic waves

within non-conductive materials: dielectric permittivity 𝜖𝑟 .

The concrete’s 𝜖𝑟 is a variable value that is highly related to

both the signal frequency (which determines the imaginary

part of 𝜖𝑟 ) and the features of the concrete. Typically, the

relative dielectric permittivity 𝜖𝑟 of concrete falls within the

range from 6 to 12 [13].

When EM waves enter the concrete, their propagation

speed changes due to the change in the dielectric permittiv-

ity of the propagation medium. Specifically, their speed in

concrete is given by 𝑣 = 𝑐√
𝜖𝑟
, where 𝑐 is the speed of light in

vacuum and air. Since the frequency 𝑓 of the incident wave

remains constant in different materials, the wavelength 𝜆 of

the signal changes with the propagation speed as 𝜆 = 𝑣
𝑓
.

Besides the propagation speed, the concrete also changes

the signal’s propagation direction. This phenomenon follows
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Figure 3: System overview.

the law of refraction as:

sin𝜃1

sin𝜃2
=

√
𝜖𝑟2√
𝜖𝑟1

(1)

where 𝜃1 and 𝜃2 are incident and refraction angles, respec-

tively.

Fig. 4 illustrates how the signal travels inside the concrete.

We assume that the depth of the RFID tag inside the concrete

is 𝑑 , then the propagation distance of the signal (denoted

as 𝑙 ) can be represented as:

𝑙 =
𝑑

𝑡𝑎𝑛(𝜃2)
(2)

By combining Eqs. (1) and (2), we can calculate the change

in phase caused by the concrete as:

Δ𝜙 =
4𝜋𝑙

𝜆𝑐𝑜𝑛
=
4𝜋𝑙
√
𝜖𝑟

𝜆𝑎𝑖𝑟
(3)

where 𝜆𝑐𝑜𝑛 and 𝜆𝑎𝑖𝑟 are the wavelength in the concrete and

the air, respectively. As can be seen, given a certain dielectric

permittivity 𝜖𝑟 , the change in signal phase is highly related

to the incident angle 𝜃2 and the depth of the tag 𝑑 .

Fig. 5 shows the phase changes under different incident

angle 𝜃1 and tag depth 𝑑 . The results are obtained by set-

ting 𝜖𝑟 = 6, which is the minimum dielectric permittivity

that concrete can achieve. As expected, the change in the

phase increases significantly with the incident angle and

the depth of the tag. When the tag depth reaches 15cm, the

concrete brings a more than 0.2 rad phase change between

incident angle 0° and 80°, which inevitably leads to serious

localization errors. This is also why some of the existing

portable localization methods cannot perform in-concrete

RFID localization.

Fortunately, however, the phase rotation caused by the

concrete wall does not affect the localization performance of

RFinder. This is because that RFinder estimates the AoA

of the tag by observing the change in phase, rather than the

absolute value. So, the impact of concrete wall can be easily

removed by performing differential on the phase signal, if

the phase rotation brought by the wall remains stable during

the movement of the reader antenna. This assumption holds

in our scenario. Specifically, consider a case where the user

stands 2m away from the wall, and moves the reader antenna

with a moving distance of 30cm. In this case, the change in

incident angle during the movement is less than 10
◦
. If the

tag’s depth is 3cm, a 10
◦
change in incident angle results in

only 0.01 rad change in phase, according to Fig. 5, which is

neglectable in our method.

3 OVERVIEW

RFinder is a system that can accurately localize RFID-tagged

items with a handheld device. It achieves fine-grained 3D

localization with only one antenna. RFinder consists of an

IMU sensor and a COTS (commercial off-the-shelf) RFID

reader. To localize a target, the user only needs to hold the

antenna and move it in the air, during which the reader

queries the tags with a 920.625MHz query signal and collects

the phase variation of the tag’s signal; the IMU sensor mea-

sures the 6-DoF inertial data of the user’s motion. RFinder

then estimates the AoA of the tag by comparing the two

sources of data. The tag’s location can be further estimated

by measuring the antenna-to-wall distance or combining

AoAs measured on multiple locations.

Fig. 3 shows the system architecture of RFinder, which is

composed of two modules:

Data standardization. This module pre-processes the phase

and IMU data for further fusion. It consists of two parts: i)

differential noise suppression module, which mitigates the

high-frequency noises introduced by signal differential; ii)

IMU drift correction module, which aims to estimate and cali-

brate the drift error of the IMU data.

AoA estimation. This module aims to estimate the AoA of

the tag’s signal by comparing the IMU data and the phase

measurements. It consists of two parts: i) data matching mod-
ule, which synchronizes and aligns the IMU data and phase

data (two series of data collected with different sampling
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rates) with an enhanced DTW algorithm; and ii) angle selec-
tion module, which compares the IMU data and the phase

data to estimate the most likely AoA of the tag’s signal.

4 DESIGN

In this section, we introduce the core design of RFinder,

where we first introduce the basic model used for AoA esti-

mation, and then illustrate the system design in detail.

4.1 Localization Model

Data matching based AoA. RFinder aims to address the

crucial limitation inherent in traditional AoA approaches,

namely, the dependence on the accurate location attributes

of the antenna. Unlike conventional methods, our approach

offers an AoA estimation model that circumvents the require-

ment for the accurate locations of the antennas, thus pro-

viding a more flexible and efficient solution for fine-grained

RFID localization.

The basic idea of RFinder is to estimate the tag’s AoA

by comparing the velocity value measured by IMU and the

reader. Specifically, when the user moves, we can obtain

the user’s moving velocity (denoted as 𝑉𝑎𝑡 ) by taking the

integral of the acceleration value measured by IMU. We can

also obtain the rate of change in antenna-to-tag distance

(denoted as 𝑉𝑡𝑎𝑔) by observing the tag’s phase differential

caused by the user’s movement. The relation between the

two velocity measurement is illustrated in Fig. 7. As can be

seen, 𝑉𝑡𝑎𝑔 is always equal to the projection of 𝑉𝑎𝑡 in tag’s

direction. So we have:

𝑉𝑡𝑎𝑔 = cos(𝜃 ) ·𝑉𝑎𝑡 (4)

Based on the above equation, we can figure out the direc-

tion of the tag (𝜃 ). However, given the measured ∥𝑉𝑡𝑎𝑔∥ and
𝑉𝑎𝑡 , we can find two candidate angles that satisfy the above

equation because cos(𝜃 ) = cos(−𝜃 ). Fig. 7 shows that 𝑉𝑎𝑚𝑏

have the same length as𝑉𝑡𝑎𝑔, which is the ambiguous vector.

To distinguish the real direction and the ambiguous direc-

tion, we move the antenna with a varying velocity in the

plane (See in Fig. 7). Since the ambiguous direction changes

with different velocities while the real direction are coincide

across different velocities, we can eliminate that ambiguity

by combining the result obtained on different velocities.

This method can be easily extended to the 3D space, where

the ambiguous directions for a certain pair of 𝑉𝑡𝑎𝑔 and 𝑉𝑎𝑡
form a conical surface, as shown in Fig. 8. Similar to the

2D case, we can change the reader’s moving direction and

velocity to obtain many cones. The intersection between

more than three cones can give the real direction of the tag

𝝅𝑡𝑎𝑔, as shown in Fig. 8.

Angle search and 3D-localization.More specifically, tag’s

direction can be estimated by finding the direction 𝝅𝑡𝑎𝑔 that

optimizes the following equation:

𝝅𝑡𝑎𝑔 (𝜃∗,𝜓∗) ← argmin

𝜃,𝜓


𝑁∑︁
𝑗

(
𝑽𝑎𝑡,𝑗 · 𝝅𝜃,𝜓
∥𝝅𝜃,𝜓 ∥

− ∥𝑽𝑡𝑎𝑔,𝑗 ∥
)
2 (5)

Here 𝝅𝑡𝑎𝑔 (𝜃 ∗,𝜓 ∗) denotes the AoA of the tag with respect

to the reader (where 𝜃 and𝜓 are pitch angle and yaw angle).

𝝅𝜃,𝜓 is the unit vector in the (𝜃,𝜓 ) direction. 𝑽𝑎𝑡,𝑗 and 𝑽𝑡𝑎𝑔,𝑗
are IMU velocity and the velocity with respect to tag at time 𝑗 ,

respectively. In practice, the reader’s antenna typically covers

only the space in front of it. So in the searching process, we

only need to traverse half of the entire space by setting

𝜃,𝜓 ∈ [−𝜋
2
, 𝜋
2
].

Nowwe have obtained the 3DAoAof the tag, i.e.,𝝅𝑡𝑎𝑔 (𝜃 ∗,𝜓 ∗).
Then, as shown in Fig. 6, we can estimate the tag’s 3D loca-

tion 𝐿𝑂𝐶𝑡𝑎𝑔 (𝑥,𝑦, 𝑧) as:



𝐿𝑂𝐶𝑡𝑎𝑔 (𝑥,𝑦, 𝑧) = 𝝅𝑡𝑎𝑔 (𝑥 = 𝐿)
= [𝑐𝑜𝑠𝜓 ∗𝑐𝑜𝑠𝜃 ∗,−𝑠𝑖𝑛𝜃 ∗,

𝑠𝑖𝑛𝜓 ∗𝑐𝑜𝑠𝜃 ∗] 𝐿

𝑐𝑜𝑠𝜓 ∗𝑐𝑜𝑠𝜃 ∗

(6)

where 𝐿 is the vertical distance between reader and the wall,

as shown in Fig. 6. It can be measured by adding a proximity

sensor to the handheld RFID reader or letting the user stand

in a marked position with a known distance to the wall.

4.2 Data Standardization

While the model proposed in Sec. 4.1 is straightforward,

embedding it into a practical system needs to solve several

challenges, such as phase noise, IMU drift error, and the dif-

ference in the sampling rates of the RFID reader and the IMU

sensor, all of which can significantly impact the system’s per-

formance. In this subsection, we will detail the methodology

to address these problems.

Phase noise suppression. The phase reading 𝜃 of an RFID

tag contains four parts:

𝜃 = (𝜃𝑝𝑟𝑜𝑝 + 𝜃𝑜𝑟𝑖𝑒𝑛𝑡 + 𝜃𝑡𝑎𝑔 + 𝜃𝑎𝑛𝑡𝑒𝑛𝑛𝑎) 𝑚𝑜𝑑 2𝜋 (7)

where 𝜃𝑝𝑟𝑜𝑝 = 2𝜋 × 2𝑑
𝜆
is the phase change caused by the

signal’s round-trip propagation along the antenna-tag dis-

tance 𝑑 and 𝜆 refers to the wavelength of the signal. 𝜃𝑡𝑎𝑔 and

𝜃𝑎𝑛𝑡𝑒𝑛𝑛𝑎 are constant values that are caused by the imperfect

hardware of the tag and antenna, respectively. 𝜃𝑜𝑟𝑖𝑒𝑛𝑡 is also

considered invariant in our system if the user does not rotate

the antenna during the movement.

We can retrieve the change rate of the antenna-tag dis-

tance and cancel out the other invariant part of the phase by

taking the first derivative of the unwrapped phase values:

∥𝑽𝑡𝑎𝑔∥ =
𝜆

4𝜋

Δ𝜃

Δ𝑡
(8)

Unfortunately, the differentiation operation may amplify

the inherent high-frequency noise contained in the phase

measurement, which further leads to a large error in velocity

estimation. We solve this problem based on the fact that

the frequency of human movement is generally between

0-5Hz while the noise signal is mainly distributed in the

high-frequency band. Fig. 9 shows the PSD (Power Spectral

Density) of the phase and the velocity value derived from the

phase measurements, which proves our assumption above.

So, we can easily remove the high-frequency noise using the

low-pass Butterworth filter.

IMU drift correction. Another challenge in IMU-based ve-

locity estimation is the serious drift error in the gyroscopes

and accelerometers, which accumulates when acceleration

integration is performed. To understand the impact of IMU

acceleration integration error, we place the IMU on a recip-

rocating machine and estimate the moving velocity of the

IMU by integrating the acceleration value reported by the

IMU. Fig. 11 shows how the velocity error accumulates with

time. We make two key observations: i) the velocity error

accumulates to nearly 10m/s within 22 seconds; and ii) al-

though the reciprocator moves with a constant speed, the

velocity value is non-linear in a relatively long time span.

The above observation tells that, on one hand, we cannot

estimate and compensate the velocity error by performing

linear fitting or low pass filter to the entire velocity sequence.

On the other hand, it is hard to build a non-linear error model

due to the inherent variability in noise levels among different

IMUs.

We solve this problem based on the observation that, in

a short period of time, the velocity error changes linearly

with time. So, instead of performing continuous movement,

we guide the user to perform intermittent movement with

the antenna, so that the velocity error accumulated in each

motion segment can be considered as changing linearly with

time. RFinder can then estimate and compensate the velocity

error in each motion segment through linear fitting Fig. 12.

4.3 Data Matching

In the basic model introduced in Sec. 4.1, we assume that the

RFID signal and IMU signal are completely aligned in the

time domain. This assumption is however unrealistic in prac-

tice due to the difference in the sampling rate of the RFID

reader and the IMU sensor (30Hz≤RFID≤60Hz, IMU≈100Hz).
To provide a more detailed illustration of the issue, we per-

form an experiment to collect real reading traces of IMU sen-

sor and RFID reader, and shown in Fig. 10 the distribution of

the sampling interval of the two devices. The results tell that:

i) the sampling interval of the two devices are quite different;

ii) the sampling rate of both the two devices show high insta-

bility. So, the two streams {𝑉𝑎𝑡1 ,𝑉𝑎𝑡2 , ...} and {𝑉𝑡𝑎𝑔1 ,𝑉𝑡𝑎𝑔2 , ...}
are misaligned with each other.

To match the two series, a straightforward method is to

perform interpolation. However, it is challenging to align

the two series because they are collected by two different

devices which are not tightly synchronized. More seriously,

the timestamps of the data record only the time when the

data arrive at the the laptop, rather than the time when the

data is physically sampled by the reader or the IMU sensor.

The unstable and random data processing delay makes it

more difficult to synchronize the two series.

DTW background.We solve the above problem with Dy-

namic Time Warping (DTW), a typical signal-matching tech-

nique that is designed to match two temporal sequences

that do not sync up perfectly. Given two time series (Sa =

{𝑆𝑎
1
, ..., 𝑆𝑎

𝑀
} and Sb = {𝑆𝑏

1
, ..., 𝑆𝑏

𝑁
}), and a cost metric 𝐷 , DTW

finds an alignment that maps each point in the first series to
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one or more points in the second series, such that the cost

of the mapping summed over all point pairs is minimized.

Typically, the cost of mapping two points 𝑆𝑎𝑖 and 𝑆𝑎𝑗 is

given by

𝑑 (𝑖, 𝑗) = (𝑆𝑎𝑖 − 𝑆𝑏𝑗 )2 (9)

Given this input, DTW searches for the best alignment of

the two series that minimizes the global cost, using standard

dynamic programming. Here, the optimal global cost of DTW

can be recursively calculated by:

𝐷𝐷𝑇𝑊 (𝑉 𝑖
𝑎 ,𝑉

𝑗

𝑏
) = 𝑑 (𝑖, 𝑗) +min


𝐷𝐷𝑇𝑊 (𝑉 𝑖−1

𝑎 ,𝑉
𝑗−1
𝑏
)

𝐷𝐷𝑇𝑊 (𝑉 𝑖−1
𝑎 ,𝑉

𝑗

𝑏
)

𝐷𝐷𝑇𝑊 (𝑉 𝑖
𝑎 ,𝑉

𝑗−1
𝑏
)

(10)

where𝐷𝐷𝑇𝑊 (𝑉 𝑖
𝑎 ,𝑉

𝑗

𝑏
) is theminimum sum cost at position(𝑖, 𝑗).

Time-weighted DTW. Despite its wide use, DTW cannot

be directly applied in our scenario because it suffers serious

error in matching two series that are scaled quite differently

across clips. Specifically, in aligning two series, DTW consid-

ers only the distance (i.e., mapping cost) between point pairs,

while ignores their time offsets. As a result, two matching

points may have a big gap in time domain. Fig. 13 (a) shows

how DTW algorithm matches the velocity series calculated

obtained by IMU sensor and RFID reader. As can be seen, to

minimize the distance summed over all point pairs, DTW

matches the IMU signals sampled in the second moving pe-

riod to the RFID signals sampled in the third moving period.

To address this problem, we propose a novel series match-

ing method named TDTW (Time-weighted DTW), which

considers both the velocity difference and the time offset

between to points in calculating the mapping cost:

𝐷 (𝑉 𝑖
𝑎 ,𝑉

𝑗

𝑏
) =

���� 𝑖 − 𝑗

𝑀

����2 + 𝑑 (𝑖, 𝑗) +min


𝐷 (𝑉 𝑖−1

𝑎 ,𝑉
𝑗−1
𝑏
)

𝐷 (𝑉 𝑖−1
𝑎 ,𝑉

𝑗

𝑏
)

𝐷 (𝑉 𝑖
𝑎 ,𝑉

𝑗−1
𝑏
)

(11)

where | 𝑖− 𝑗
𝑀
|2 is the norm square distance between two points

on the timeline.

Fig. 13 (b) shows the matching result achieved by the pro-

posed TDTW algorithm. As can be seen, TDTW is capable of

finding the best matching between the two series, despiting
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Figure 13: TDTW performance.

the difference in amplitude scaling and local time shifting of

RFID and IMU signals.

5 EVALUATION

5.1 Implementation and Methodology

Implementation.We implement RFinder using the Imp-

inj R420 RFID reader [2], which is connected with a Laird

S9025PR antenna [35], The readerworks at a single frequency

of 920.625MHz and the gain of the antenna is set at 8.5dBi.

According to FCC regulations [19], for the transmitter that

works at a signal bandwidth that is less than 250kHz with-

out frequency hopping. The RFID system samples the tag’s

signal at a reading rate ranging from 30∼50Hz. To measure

the moving velocity of the Reader, we further attach an N200

IMU sensor (supplied by WHEELTEC [16]) on the antenna,

as shown in Fig. 14. The IMU sensor samples the 6-DoF move-

ment of the reader with a frequency of 100Hz. It should be

noted that there are extensive commodity handheld RFID sys-

tems [28] that operate with Android and iOS mobile phones,

which are usually equipped with a low-cost IMU. Our system

can be easily deployed on these devices and we leave it in

our future work.

Methodology. In the experiments, we embed the RFID tags

into 30𝑐𝑚 × 30𝑐𝑚 × 15𝑐𝑚 concrete components with a depth

of 3cm, as shown in Fig. 14. We use standard C30 concrete

[14] which consists of three layers, where the upper two

layers are made of poured cement and the third layer is com-

posed of stones and steel bar meshes. We put the components



on a metallic shelf (as shown in Fig. 14) and observe how the

performance of RFinder is affected by the following factors:

i) The relative positions between the component and the
reader antenna, which is further determined by three differ-

ent parameters: the deployment height𝐻 ; the reader-to-shelf

distance 𝐿; and the horizontal offset𝑊 , as shown in Fig. 14.

We tested 81 different relative positions and the results are

shown in Sec. 5.2.

ii) User’s operation modes, such as moving the device at

different distances in the air and different speeds.

iii) Concrete related factors, such as the composition of the

concrete and the buried depth of the tag.

Benchmark. We conduct a benchmark experiment to com-

pare the signal attenuation when the tag is embedded in the

concrete and air. In the experiment, we first place the tag

at a height of 𝐻 = 0.75m and fix the height of antenna at

0.75m. We vary the antenna-to-shelf distance 𝐿 from 0.5m to

2m with a step of 0.5m and vary the horizontal offset of the

antenna from -1.0m to 1.0m, with a step of 0.2m. We read the

tag’s RSSI on each of the 44 positions. As a comparison, we

further repeat the above experiment by embedding the tag

in a prefabricated component and place the component at a

height of 0.75m. The results obtained in air and in concrete

are shown in Fig. 15.

As can be seen, in both the scenarios there are areas where

the signal cannot be received, known as signal blind spots.

While, compared with the case in the air, signal propagating

in the concrete suffers an additional 10dB attenuation. An-

other important observation is that we can find more blind

spot in the in-concrete cases. This may bring difficulties to

the antenna array based or SAR (Synthetic Aperture Radar)

based localization methods, which need to combine the sig-

nal that received at different locations for accurate RFID

localization. While, different from those methods, RFinder

can accurately localize a tag based on the signal collected

in one spot (with micro-mobility within a distance of few

decimetres). That is to say, it can achieve accurate localiza-

tion as long as it can find a "sighted" spot in front of the wall,

which makes it highly highly resistant to the impact of the

concrete wall.

5.2 Overall Performance

In this section, we evaluate the overall performance of RFinder

under different relative position between the tag and the user.

In the experiment, we place the concrete component at three

different heights: 𝐻=0.25m, 0.75m, and 1.25m, where the 𝐻

refers to the height of the tag which is embedded in the con-

crete. The reader antenna’s height is fixed at 𝐻 = 1.0m, and

the distance between the antenna and the wall (𝐿) varies from

1m to 2m with a step of 0.5m. The horizontal offset of the

antenna (𝑊 ) ranges from -0.8m to 0.8m, with a step of 0.2m.

① RFID Reader ② Low-Cost IMU

③ The RFID tag is embedded 

in the concrete component

②

①

③

𝑯

𝑳

𝑾

Figure 14: System deployment.

Fig. 16 shows the results under different positions. Among all

69 points (excluding blind spots), RFinder achieves a 11.3
◦

mean error, with a variance of 2.7
◦
.

Fig. 16 further shows the AoA error obtained under differ-

ent antenna-to-wall distance 𝐿. One counterintuitive obser-

vation in this figure is that the accuracy obtained at shorter 𝐿

is not always better than that obtained at longer 𝐿. This can

be attributed to the field of view (FoV) angle of the antenna.

Due to the presence of the FoV, a shorter antenna-to-wall

distance may lead to a larger tag-to-antenna orientation,

leading to a lower probability that the tag can be radiated by

the reader. Additionally, in our model, we assume that the

distance between the tag and the antenna is much larger than

the movement distance of the antenna. However, when the

antenna locates closer to the tag, there is a larger variation

of the tag-to-reader AoA when the user moves the antenna,

resulting in greater error in AoA estimation.

We further evaluate RFinder’s localization accuracy. Specif-

ically, based on the AoA estimation and the antenna-to-wall

distance 𝐿, we estimate the exact location of the tag. Fig. 17

(b) shows the results obtained under different 𝐿. The median

location error is 0.2m, 0.36m and 0.40m, when we set 𝐿 at

1m, 1.5m and 2m, respectively. Correspondingly, the 95
𝑡ℎ

location error is 0.39m, 0.60m and 0.78m, respectively.

5.3 Impact factors

One important factor that can affect the RFinder’s perfor-

mance is the user’s motion pattern, such as moving distance,

and speed. In this section, We evaluate how these factors af-

fect the performance of RFinder. Besides the motion pattern,

we in this section also evaluate RFinder’s performance un-

der different concrete structures and the buried depth of the

tag. In all the experiments in this section, the tag is placed at

[𝐻,𝑊 , 𝐿] = [1𝑚, 0𝑚, 1.5𝑚], and the user stands at [𝐻,𝑊 , 𝐿]

= [1𝑚, 0𝑚, 0𝑚] on the coordination shown in Fig. 14.

Movement speed.We first evaluate RFinder’s performance

at two different speeds. In the experiment, we move the

antenna in four different directions. In each direction, we
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Figure 15: RSSI measurement.
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Figure 17: Overall performance in different 𝐿.
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Figure 18: Impact of the moving speed.
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Figure 19: Impact of the moving distance.

perform round-trip movement with two different speeds,

i.e., slow (about 0.25𝑚/𝑠) and fast (about 0.5𝑚/𝑠). The cor-
responding radial velocity measured under the two moving

speeds is shown in Fig. 18 (a). Note that we categorize them

into two types of velocities by the average velocity of the

four movements. Fig. 18 (b) shows the AoA error and location

error obtained under different moving speeds. The results

show that RFinder achieves a better AoA estimation accu-

racy (i.e., 8.3° on average) when the user moves the antenna

at a fast speed. The accuracy decreases to 13.7° when the

antenna moves at a slow speed. This is because the IMU and

phase signals achieve a higher SNR at a higher moving speed.

Movement distance. In this experiment, we move the an-

tenna at a fast speed, while changing the movement dis-

tance from 0.1m (short), 0.2m, to 0.3m, with a step of 0.1m.

The phase measurements obtained under different move-

ment distances are shown in Fig. 19 (a). As can be seen, the

phase change measured under the shortest moving distance

is about 2.5 rad. Fig. 19 (b) shows the AoA accuracy obtained

under differentmovement distances. As can be seen, RFinder

achieves the best performance when the movement distance

is 0.2m. When the movement distance increases to 0.3m, the

AoA estimation error increases to 18°. This is because when

the antenna moves with a longer distance, the AoA of the

tag’s signal will change during the movement, which violates

the assumption underlying our signal model in Sec. 4.1, and

thus brings higher AoA estimation error.

Different concrete structure. In most concrete compo-

nents, steel bars are used to enhance their tensile strength.

In our experiment, we embed a steel reinforcement mesh at

the bottom of the concrete with dimensions of 30𝑐𝑚 × 30𝑐𝑚.

Then we place stones on the mesh. The tag is embedded at

the upper part of the concrete with a depth of 3𝑐𝑚. Another

concrete component is totally made of concrete, which con-

sists of cement, sand, and stone. We place the component

at [𝐻,𝑊 , 𝐿] = [1𝑚, 0𝑚, 1.5𝑚] and the location of user is at

[𝐻, 𝐿] = [1𝑚, 1.5𝑚] while the𝑊 varies from −0.8𝑚 to 0.8𝑚

with 20𝑐𝑚 gap. Fig. 20 shows that the median location errors

of the two types of components are 0.21𝑚 and 0.24𝑚 and

the corresponding median AoA errors are both 7.8◦, with a

very small difference observed in the results. This is because

the reflected signal from the tag reaches the steel mesh and

undergoes a thick layer of concrete before reaching the re-

ceiver. The multipath effects of this part are very weak and

can not affect the directly reflected signal of the tag.

Different burial depths of the tag. In our study, we evalu-

ate the impact of different burial depths of the tag in the con-

crete. We placed the tag at two different depths: 3𝑐𝑚 depth

and 6𝑐𝑚 depth. By comparing the localization performance

at these different depths, we aimed to assess the influence of

burial depth on the system’s performance. Under the condi-

tion of a burial depth of 6cm, we are only able to read the tag

within a small region of 𝐿 = 1𝑚. Therefore, in all our experi-

ments, We place the component at [𝐻,𝑊 , 𝐿] = [1𝑚, 0𝑚, 1𝑚]
and the location of the user is at [𝐻, 𝐿] = [1𝑚, 1𝑚] while the
𝑊 varies from −0.6𝑚 to 0.4𝑚 with 20𝑐𝑚 gap. Fig. 21 shows

that the median location errors of 3𝑐𝑚 and 6𝑐𝑚 depth are

0.13𝑚 and 0.24𝑚, respectively. Besides, the corresponding

median AoA errors are 7.46◦ and 8.34◦, respectively. This
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burial depths of RFID tag.

indicates that the depth where the tag is buried has a signifi-

cant impact on the strength of the reflected signal. However,

its impact on RFinder is limited.

Different materials of the holding shelf. In the system

setup described above, a metal shelf is used to support the

concrete components. To investigate the impact of different

materials, we replaced the metal shelf with a wooden one

and repeated the experiments in two different environments.

The results in Fig. 22 demonstrate that using a wooden shelf

results in a lower location error compared to the metal one.

However, in real-world building construction, metal compo-

nents (e.g., steel bars) are commonly used to support concrete

structures. Consequently, the performance of RFinder in

practical applications is more aligned with the results ob-

tained using the metal shelf. In our future work, we will try

to mitigate the impact of metal components.

Different thickness of components. In reality, prefabri-

cated components can vary in thickness. Here, thickness

refers to the dimension of the component perpendicular to

the surface where the tag is embedded. For example, the com-

ponent shown in Fig. 26 has a thickness of 15cm. According

to the regulations of the PCI[26] and NPCA[24], the thick-

ness of prefabricated wall components generally ranges from

100mm to 300mm. Therefore, we conducted experiments on

components with two different thicknesses: 15cm and 30cm,

with the tags embedded at a depth of 3cm in both cases. As

Fig. 23 shows, the 30cm thick components exhibit larger lo-

cation errors and greater variance. We attribute this to the

increased multipath effects within thicker components.

5.4 Case Study

Distinguish multiple tags. Our system can not only lo-

calize the RFID tag, the key of our system is to accurately

distinguish the position of different components. In Tab. 1,

we have listed 9 types of components. Their widths and

heights mostly range from 50 cm to several meters. Some

components, such as beams and columns, have narrower

widths. However, these components are typically spaced fur-

ther apart, making them easier to distinguish compared to
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Figure 22: Impact of the dif-

ferent environments.
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ness of components.
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Figure 24: Distinguish multiple concrete components.

panels and slabs. To demonstrate the system’s effectiveness

in practical scenarios, we use 5 concrete components, labeled

from #1 to #5, with a horizontal spacing of 100 cm. Their posi-

tions are [𝐻,𝑊 , 𝐿] = [1.65𝑚,−1𝑚, 1.5𝑚], [1.65𝑚, 0𝑚, 1.5𝑚],
[1.65𝑚, 1𝑚, 1.5𝑚], [0.85𝑚,−0.5𝑚, 1.5𝑚], [0.85𝑚, 0.5𝑚, 1.5𝑚].
Additionally, we repeated the experiment with a reduced hor-

izontal spacing of 50 cm. As shown in Figure 24, the results

indicate that the average distinction accuracy at a 50 cm

spacing is 70%, while at a 100 cm spacing, it is 84%. The im-

provement with 100cm spacing is not substantial because, at

the larger spacings, tags nearly move out of the antenna’s

field of view, leading to a lower SNR (signal-to-noise ratio).

Different user operators. In this section, we evaluate the

impact of operational behavior on the experiment. We re-

cruited 9 volunteers and allowed them to move the handheld

device in anymanner they preferred, such as using their right

or left hand, and varying the moving speed, distance, and

direction. Each volunteer is required to move the antenna 5

times in 10 seconds and keep the operational behavior the

same at each time. Moreover, the volunteers are required to

keep the antenna plane facing forward so that the tags can be

read. We place the component at [𝐻,𝑊 , 𝐿] = [1𝑚, 0𝑚, 1.5𝑚]
and the location of the user is at [𝐻,𝑊 , 𝐿] = [1𝑚, 0𝑚, 0𝑚].
In this group of experiments, user #5 and #8 move the an-

tenna in a square shape perpendicular to the wall, user #1,

#7 and #9 move the antenna in a circle shape, while user

#2, #3, #4 and #6 move the antenna in the shape of different

polygons. Result in Fig. 25 shows that with most of the oper-

ators, RFinder can achieve an average AoA accuracy within
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10°. It is also worth noting that with volunteer #3, RFinder

achieved the lowest location error. We observed that this

volunteer moved the antenna at a faster speed and within a

smaller range, compared to the others. So this result aligns

with our findings from previous experiments.

6 RELATEDWORK

As one of the commonest backscatter technologies [17, 18],

RFID has been extensively studied over the years, espe-

cially for localization applications. Due to the limited spa-

tial resolution of RFID signal, traditional RFID localization

achieves only decimetre or meter scale accuracy. Some re-

cent efforts[11, 33, 41] have been made to achieve more fine-

grained localization. A core of those methods is to refine the

localization by combining multiple sources of information,

e.g., signals collected by different antennas[6], from different

spatial locations[3, 23, 32], on different frequencies[42], etc.

Although these methods achieve cm-level or even mm-level

accuracy, they incur either unacceptable cost or restrictive

assumptions on the targets, which makes them unsuitable

for our scenarios.

For example, to achieve the fine-grained localization, some

systems measure the signal phase at multiple antennas, and

use the phased antenna array model to estimate the AoA.

Although these techniques improve localization accuracy,

they are too bulky to be deployed on portable devices.

To avoid costly antenna arrays, an alternative method is to

mount the reader on a robot, and leverage the robot’s move-

ment to emulate an antenna array. However, these methods

require moving the robot on well-defined trajectories, mak-

ing them ill-suited for handheld human mobility.

To solve the above problem, some recent works propose

handheld RFID localization methods, which achieve fine-

grained localization using only one antenna. For example,

[12] proposes a portable RFID localization system which

leverage user’s mobility to emulate an antenna array for

fine-grained localization. However, this method requires the

user to move his/her hand along a pre-defined trajectory

(e.g., a circle). A slight deformation of the trajectory (which

is inevitable for human operation) may seriously affect the

localization accuracy, which makes the system hard to use

in practice. Similar to RFinder, [34] also proposes a portable

RFID localization method which achieves single-antenna

localization by combining the RFID signal and the IMU signal.

However, in this case, the IMU is utilized to calculate the

movement distance of handheld devices, which is prone to

be affected by the acceleration drift of IMU sensors.

The most relevant work to ours is [25], which designs an

RFID localization method for handheld readers. However, it

does not consider the practical issues and uses raw acceler-

ations to match the RFID acceleration, which reduces the

accuracy because accelerations are much more sensitive to

the user’s motion.

7 CONCLUSION

This paper introduces RFinder, the first to demonstrate a

portable RFID localization system that can estimate the AoA

of a tag that is embedded in prefabricated buildings. Through

experiments, we show that RFinder achieves an average

AoA estimation error of about 11° in the range of 2.5m and

a location error at decimeter-level, which is sufficient for

distinguishing the prefabricated components.

However, RFinder is not without limitations. First, the

reading distance of the embedded RFID tag is restricted to

less than 3 meters, making it challenging to localize compo-

nents on higher walls. This issue can be addressed by using

active RFID tags, which offer a longer reading distance. Ad-

ditionally, we require users to operate the system with the

antenna plane facing towards the wall. Since the antenna

has a specific FoV, tags outside this FoV will not be read.

Despite these limitations, RFinder also enables multiple

applications. For instance, in retail stores, handheld devices

can assist clerks in locating misplaced items. Handheld de-

vices can also help medical personnel quickly scan and locate

medications, ensuring that storage and distribution comply

with safety regulations.
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