
FedReG: Recouping the Global Model in
Personalized Federated Learning

Tianyi Liu
Delft University of Technology

Delft, The Netherlands
ltylty221@gmail.com

Mingkun Yang
Delft University of Technology

Delft, The Netherlands
m.yang-3@tudelft.nl

Qing Wang
Delft University of Technology

Delft, The Netherlands
qing.wang@tudelft.nl

ABSTRACT
With the widespread application of artificial intelligence, central-
ized machine learning approaches, which require access to users’
local data, have raised concerns about data privacy. In response,
federated learning (FL) has been proposed where models are trained
locally on user data and then offloaded to the central server for
global aggregation. However, a single global model in FL struggles
to meet the diverse personalized needs of clients and suffers sig-
nificant accuracy degradation when client data distributions are
uneven or exhibit non-IID characteristics. Personalized federated
learning has been introduced to address data heterogeneity and to
meet customized needs. Yet, personalized federated learning (PFL)
also has shortcomings: the global model in federated learning often
becomes an intermediary product in this framework, lacking the ad-
vantage of learning a generalized model. In this paper, we propose
FedReG, a new scheme in personalized federated learning with
parameter decoupling and rebalanced dataset, to recoup the perfor-
mance of the global model. By leveraging parameter decoupling and
introducing a rebalanced dataset generated according to the distri-
bution of clients’ local data, FedReG achieves high accuracy for both
the global model and average client models. Extensive experiments
also demonstrate the superior scalability of FedReG and robustness
over other federated learning and personalized federated learning
algorithms.

CCS CONCEPTS
• Computing methodologies→ Machine learning; Distributed
algorithms; Distributed artificial intelligence.

KEYWORDS
Personalized federated learning, parameter decoupling, data aug-
mentation

1 INTRODUCTION
Artificial Intelligence (AI) technologies is now mature and has also
been integrated into various applications, reshaping numerous in-
dustries. This growth has been significantly bolstered by the devel-
opment of intelligent devices, such as smartphones, smartwatches,
and smart gateways. These devices, with their enhanced capabili-
ties, have contributed to an exponential increase in data, which is
crucial for AI-driven solutions [32]. However, the rising concerns
over data privacy have led legislative bodies in various countries
to implement measures such as the European General Data Protec-
tion Regulation (GDPR) [27] and the California Consumer Privacy
Act (CCPA) [12], presenting new challenges to machine learning
solutions that leverage big data and increasing demands for privacy-
preserving AI [8].

Figure 1: Themotivation of our FedReG.We target recouping
the performance of the global model in personalized feder-
ated learning.

Federated Learning (FL) emerged as a solution to tackle these pri-
vacy concerns [15, 26]. Introduced by McMahan et al. in 2016 [20],
FL began with the Federated Averaging (FedAvg) algorithm. Unlike
traditional approaches, FL involves training local models on individ-
ual devices and then aggregating these models on a central server
to form a global model. This process ensures that personal data
remains on user’s device, thereby enhancing data security [13, 19].

Despite these advantages, Federated Learning faces challenges in
practical applications, especiallywhen dealingwith non-independent
and identically distributed (non-IID) data. In such scenarios, where
client data distributions are unbalanced and heterogeneous, tradi-
tional FL approaches often perform suboptimally [18, 26, 31].

To address the performance degradation of traditional federated
learning algorithms due to data heterogeneity and to meet clients’
personalized needs, a research direction known as Personalized
Federated Learning (PFL), has gradually gained attention. Person-
alized Federated Learning aims to provide participating clients in
federated learning with a personalized model that performs better,
rather than providing only a single global model. However, many
personalized federated learning algorithms, such as FedPer [6], Fe-
dRep [2], and FedBABU [23], often result in decreased performance
of the global model, to achieve better personalized models.

In this paper, we target recouping the performance of the global
model in personalized FL, as illustrated in Figure 1. We propose
a new training architecture FedReG, based on model decoupling
in personalized FL as well as by generating a rebalanced dataset
according to the distribution of clients’ local data. FedReG seeks to
recoup the gain in the global model’s performance within person-
alized FL algorithms while maintaining as well the performance of
clients’ personalized models. To evaluate FedReG, we compare it
with nine other state-of-the-art (SOTA) methods on four different
datasets and analyze the algorithm’s scalability, and robustness.
Our main contributions are summarized below:
• We propose a training framework, FedReG, for personalized

FL based on model decoupling. This approach creates a new
rebalanced dataset from the user’s original local data without

1



Tianyi Liu, Mingkun Yang, and Qing Wang

requiring additional data sample exchanges with the server.
This allows the server to generate a well-performing global
model while maintaining local accuracy for users.

• We explore the impact of the size and creation method of the
rebalanced dataset required by FedReG during training and
find an optimal solution that achieves the highest global model
accuracy across various configurations. FedReG also modifies
the aggregation weights during the aggregation process at the
server to further increase the accuracy of the global model.

• We build a testbed with 10 Jetson Nanos to validate the per-
formance of FedReG and compare it with nine state-of-the-art
methods. The results have demonstrated the effectiveness of
our proposed FedReG in practice, in terms of accuracy, scala-
bility, and robustness.

2 BACKGROUND
2.1 Federated Learning
Federated Learning (FL), first conceptualized by the authors of
FedAvg [20], aims to train a global model that performs well across
multiple clients, or an “average client” [26]. This contrasts with
traditional approaches that rely on transferring local user data to
a centralized server for training[15]. Figure 2 depicts the training
process of the traditional FL framework, also described below:

a) At the beginning of a communication round, the server
sends a global model to all the clients that have been se-
lected for participation in that round.

b) The selected clients train the received global model on their
local data.

c) Upon completing training, these clients send the parameters
of their trained models back to the server.

d) The server aggregates these parameters and updates them
into a new global model for use in the next round.

The goal of each round is to obtain an optimal global model𝑤 that
minimizes the aggregated local loss function 𝑓𝑚 (𝑤𝑚) [32]:

𝑓𝑚 (𝑤𝑚) =
1
𝐷𝑚

𝐷𝑚∑︁
𝑖

𝑙 (𝑥𝑖 , 𝑦𝑖 ;𝑤𝑚) ; (1)

min 𝑓 (𝑤) =
𝑀=⌊𝐶×𝐾 ⌋∑︁
𝑚=1

𝐷𝑚

𝐷
𝑓𝑚 (𝑤𝑚) . (2)

Here, 𝑥𝑖 and 𝑦𝑖 represent the features and labels of sample 𝑖 , re-
spectively. 𝐷𝑚 is the size of the client’s local dataset, 𝐷 is the total
size of samples from all clients participating in the round, 𝐶 is the
participation rate per round, 𝐾 is the total number of clients,𝑚 is
the ID of a client that joins in this round, and 𝑙 is the loss function.

2.2 Personalized Federated Learning
Personalized FL is a research direction built upon the foundation of
FL. It aims to overcome the challenges posed by data heterogeneity
while catering to the personalized needs of users [25]. Personal-
ized FL achieves its goal by personalizing the global model or by
allowing users to learn their personalized models locally [26]. This
ensures that each model performs well locally for all participating
users. There are various approaches to personalized FL, such as
data augmentation, client selection, regularizing local loss, or data

Client 1

Server

Client modelClient Dataset

a

b

c

d

Client N

b

Global model

Figure 2: Process of the traditional federated learning algo-
rithms in one communication round.

decoupling. Below, we briefly introduce data decoupling solutions
in personalized FL that are mostly related to our FedReG.

Parameter Decoupling. FedPer [6] introduces a novel training
framework where the model is partitioned into base layers and
personalization layers, also referred to as the model’s head. This
model structure draws inspiration from multi-task learning and
transfer learning concepts. The base layers, akin to the shared lay-
ers in multi-task learning (MTL), capture features from various
data types [24, 30]. Meanwhile, the personalization layers, similar
to task-specific layers in multi-task learning, learn features and
data distribution unique to each user [26]. Similar implementations,
dividing the model into base and head, have also been utilized
in methods such as FedRep [2], FedBABU [23], GPFL [29], and Fe-
dRoD [7], etc. These approaches reflect a common understanding of
the need for both shared knowledge and individual personalization
within the paradigm of FL.

3 FEDREG DESIGN
3.1 Overview
Figure 3 illustrates the overall training process of our FedReG. To
recoup the performance of global model in personalized FL, we
design at each client an additional model head, 𝐻𝑒𝑎𝑑𝐺 , which is
sent to the FL server for aggregation. Also, we derive a Rebalanced
Dataset on the client’s local data to train the model base and𝐻𝑒𝑎𝑑𝐺
for global model aggregation.

The client’s model base and𝐻𝑒𝑎𝑑𝑃 form a complete client model,
and 𝐻𝑒𝑎𝑑𝑃 is kept on each client. 𝐻𝑒𝑎𝑑𝐺 has the same structure
as 𝐻𝑒𝑎𝑑𝑃 , which are usually the last few linear layers of the model
in the approach of parameter decoupling.

Rebalanced dataset. The rebalanced dataset is introduced based
on the fact that the local models trained on the FL clients will
benefit the global model at the server if they are trained on iid (i.e.,
balanced) data.

To build such a rebalanced dataset, each class within the local
dataset of a client is equalized either by augmenting the data from
the original dataset through data augmentation techniques or by

2



FedReG: Recouping the Global Model in Personalized Federated Learning

Client 1

Server

HeadP
HeadG

Base

Client N

Upload parts
Rebalanced Dataset

Original Dataset

a

b

c

d

Figure 3: The procedure of the proposed FedReG in one com-
munication round.

randomly selecting to reduce to the same value. Each client’s re-
balanced dataset retains the same classes as the original dataset,
without acquiring additional data not belonging to the original
dataset through communication with other clients or the FL server.
Figure 4 gives an example, illustrating the data distribution of the
original datasets of 30 clients and their rebalanced datasets.

Following the traditional FL process, the process of our FedReG
are shown in Figure 3 and described as follows:
• At the beginning of each communication round, the server

sends the global model to all clients that have been selected for
participation in this round.

• The selected clients train the local model base and 𝐻𝑒𝑎𝑑𝑃 re-
tained locally with the original dataset and then train the local
model’s base and 𝐻𝑒𝑎𝑑𝐺 used for global model aggregation
with the rebalanced dataset.
• Clients upload the parameters of the local model’s base and
𝐻𝑒𝑎𝑑𝐺 and related data used, including the client’s original
dataset size 𝐷𝑜𝑚 and the effective sample size 𝐷𝑒𝑚 , for aggrega-
tion to the server.

• The server calculates the weights for aggregating the base and
𝐻𝑒𝑎𝑑𝐺 separately based on client’s original dataset size 𝐷𝑜𝑚
and the effective sample size𝐷𝑒𝑚 in the rebalanced dataset; then
it aggregates the global model.

The derivation of the effective sample size 𝐷𝑒 and 𝐷𝑒𝑚 shown in
Figure 3 will be explained in Section 3.4.

3.2 Local Training on FedReG Client
As shown in Figure 5, the local training process of the user consists
of two main steps, with the model trained sequentially through the
original dataset and the rebalanced dataset.

0

2000

Original Data Distribution

0 5 10 15 20 25 30
Client

0

1000

Rebalanced Data Distribution

Nu
m

be
r o

f S
am

pl
es

Figure 4: The illustration of the data distribution of the origi-
nal dataset and rebalanced dataset, with each color denoting
the data of a distinct class.

HeadP

loss 

HeadGHeadG HeadP

loss

Step 1 Step 2
Client Side

HeadP
HeadG

Base

Optimizer updatesRebalanced Dataset

Original Dataset

Figure 5: The local training at the FedReG client.

• Training starts with the original dataset, where data is pro-
cessed through the base layer to output an intermediate result,
𝑚𝑖𝑑 . The 𝑚𝑖𝑑 is then processed through 𝐻𝑒𝑎𝑑𝐺 and 𝐻𝑒𝑎𝑑𝑃 ,
respectively outputting 𝑜𝑢𝑡𝑝𝑢𝑡𝑔 as a prediction result with a
more balanced distribution among classes and 𝑜𝑢𝑡𝑝𝑢𝑡𝑝 as a
prediction result where the distribution among classes depends
on the local data distribution. “𝑜𝑢𝑡𝑝𝑢𝑡𝑝 + 𝑜𝑢𝑡𝑝𝑢𝑡𝑔" is used as
the output result for input into the loss function to calculate the
gradient. During backpropagation, the gradient is propagated
back to the base through both𝐻𝑒𝑎𝑑𝐺 and𝐻𝑒𝑎𝑑𝑃 . Subsequently,
the optimizer updates the parameters of the Base and Head
𝐻𝑒𝑎𝑑𝑃 , while 𝐻𝑒𝑎𝑑𝐺 remains unchanged. The idea of using
“𝑜𝑢𝑡𝑝𝑢𝑡𝑝 +𝑜𝑢𝑡𝑝𝑢𝑡𝑔" as the output result is to allow Head𝐻𝑒𝑎𝑑𝑃 ,
which is closer to the local data distribution, to be trained more
quickly with the help of 𝐻𝑒𝑎𝑑𝐺 , which is aggregated through
FL and has a more balanced and generalizable prediction for
various classes.

3



Tianyi Liu, Mingkun Yang, and Qing Wang

Algorithm 1: FedReG Client
Input: loss function f, Optimizer, Client Local Dataset 𝑑𝑜,𝑚 ,

Rebalance Dataset 𝑑𝑟,𝑚
1 Initialize client𝑚 local weight𝑤𝑚 at random
2 for communication round k = 1,2,3,... do
3 if Client𝑚 is selected then
4 Receive𝑤 (𝑘 )𝑔 from Server
5 for batch 𝑏𝑜 = (𝑥𝑜 , 𝑦𝑜 ) in 𝑑𝑜 do
6 mid← base(𝑥𝑜 )
7 𝑜𝑢𝑡𝑝𝑢𝑡𝑔 ← 𝐻𝑒𝑎𝑑𝐺(mid)
8 𝑜𝑢𝑡𝑝𝑢𝑡𝑝 ← 𝐻𝑒𝑎𝑑𝑃 (mid)
9 loss← f(𝑜𝑢𝑡𝑝𝑢𝑡𝑔+𝑜𝑢𝑡𝑝𝑢𝑡𝑝 ,𝑦𝑜 )

10 loss function backwards
11 Optimizer updates𝑤 (𝑘 )

𝑏,𝑚
,𝑤 (𝑘 )
ℎ𝑝,𝑚

12 end
13 for batch 𝑏𝑟 = (𝑥𝑟 , 𝑦𝑟 )in 𝑑𝑟 do
14 mid← base(𝑥𝑟 )
15 𝑜𝑢𝑡𝑝𝑢𝑡𝑔 ← 𝐻𝑒𝑎𝑑𝐺(mid)
16 loss← f(𝑜𝑢𝑡𝑝𝑢𝑡𝑔 ,𝑦𝑟 )
17 loss function backwards
18 Optimizer updates𝑤 (𝑘 )

𝑏,𝑚
,𝑤 (𝑘 )
ℎ𝑔,𝑚

19 end
20 Send 𝐷𝑜𝑚 ,𝐷𝑟𝑚
21 Send𝑤 (𝑘 )

𝑏,𝑚
,𝑤 (𝑘 )

ℎ𝑔,𝑚
to Server

22 end
23 end

• Next, the rebalanced dataset (cf. Section 3.4 for the construction
of this dataset) is used to retrain the base. The output𝑚𝑖𝑑 result
is only fed to 𝐻𝑒𝑎𝑑𝐺 , and the loss is calculated only based on
𝐻𝑒𝑎𝑑𝐺 ’s 𝑜𝑢𝑡𝑝𝑢𝑡𝑔 . During backpropagation, it only propagates
through 𝐻𝑒𝑎𝑑𝐺 to the base. The optimizer then updates the
base and 𝐻𝑒𝑎𝑑𝐺 . After this, the base and 𝐻𝑒𝑎𝑑𝐺 , as a complete
model, upload their parameters to the server for aggregation.
This step mainly aims to train 𝐻𝑒𝑎𝑑𝐺 with a more balanced
prediction result distribution through a rebalanced dataset with
a more balanced data distribution, providing the server with a
model that has strong generalizability. This step updates the
base part because it is considered a low-level feature extractor,
and the low-level features learned from the rebalanced dataset
generated based on the original dataset are not significantly
different from those learned from the original dataset. Moreover,
the rebalanced dataset includes samples generated through data
augmentation, which should make the base part more robust.

The pseudo-code of the client-side operations is presented in Al-
gorithm 1. It is worth noting that the number of training samples for
the local model’s base part and𝐻𝑒𝑎𝑑𝐺 are actually different because
the rebalanced dataset could be created with different threshold
𝑡 . Therefore, some adjustments to the server aggregation step are
proposed in FedReG, which will be detailed in the next subsection.

3.3 Federated Learning on FedReG Server
As shown in Figure 3, an explanation of all components in the entire
process is provided. Each client holds their own original dataset,
and a rebalanced dataset is generated from it. The model structure
held by each client is the same, with each having a base layer of
the model, and Head layers 𝐻𝑒𝑎𝑑𝐺 and 𝐻𝑒𝑎𝑑𝑃 . By combining the
base layer with the both head layers, the model can make complete
predictions and learn about each category of a task or dataset,
meaning the Head layers will output for every class of the dataset,
regardless of whether the local user has data in those classes.

The Head layer 𝐻𝑒𝑎𝑑𝐺 is trained with the local rebalanced
dataset, resulting in 𝐻𝑒𝑎𝑑𝐺 being influenced by a dataset that is
closer to an IID distribution, leading to more balanced model predic-
tions. When a certain class significantly exceeds others in quantity,
machine learning models tend to predict future outcomes as the
class with more data in training set.

However, by training 𝐻𝑒𝑎𝑑𝐺 with the rebalanced dataset, the
predictions made by combining the base layer and 𝐻𝑒𝑎𝑑𝐺 will not
be biased towards a specific class due to unbalanced local data
distribution. Subsequently, 𝐻𝑒𝑎𝑑𝐺 , along with the base layer, is
transmitted to the centralized server for aggregation, resulting in a
model with strong generalizability.

The Head layer 𝐻𝑒𝑎𝑑𝑃 is trained with the local non-IID dis-
tributed original data, learning the characteristics of the local data
distribution. Thus, predictions made by combining the base layer
and𝐻𝑒𝑎𝑑𝑃 will be more aligned with the local data distribution. Af-
ter training, 𝐻𝑒𝑎𝑑𝑃 is retained locally and not updated through fed-
erated learning. When predicting locally, both 𝐻𝑒𝑎𝑑𝐺 and 𝐻𝑒𝑎𝑑𝑃
work together.

During server aggregation, the aggregation weights differ from
traditional FL. They are based on the size of the original datasets of
the clients participating in the current round. Typically, the server’s
aggregation part adopts the FedAvg aggregation approach, written
as follows:

𝑤𝑔 =

𝑀∑︁
𝑚=1

𝐷𝑚

𝐷
𝑤𝑚 , (3)

where𝑤𝑔 is the global model’s parameters,𝑤𝑚 is the parameters
of client𝑚’s model, 𝐷𝑚 is the size of client𝑚’s original dataset, 𝐷
is the total size of the original datasets of all clients participating in
the current round, and𝑀 is the number of participating clients.

However, in FedReG, the model’s base part and head part are
aggregated separately with different weights, as follows:

𝑤𝑏,𝑔 =

𝑀∑︁
𝑚=1

𝐷𝑜𝑚

𝐷𝑜
𝑤𝑏,𝑚 , (4)

𝑤ℎ,𝑔 =

𝑀∑︁
𝑚=1

𝐷𝑒𝑚

𝐷𝑒
𝑤ℎ𝑔,𝑚 , (5)

where 𝑤𝑏,𝑚 is the weight of each user’s base, 𝑤𝑏,𝑔 is the weight
of the aggregated global model’s base,𝑤ℎ𝑔,𝑚 is the weight of each
client’s 𝐻𝑒𝑎𝑑𝐺 , and 𝑤ℎ,𝑔 is the weight of the aggregated global
model’s head. 𝐷𝑜𝑚 is the size of client𝑚’s original dataset, which is
the previously mentioned 𝐷𝑚 . 𝐷𝑜 is the same as 𝐷 , the total size
of the original datasets of all clients participating in the current
round. 𝐷𝑒𝑚 refers to the number of effective samples in client𝑚’s

4



FedReG: Recouping the Global Model in Personalized Federated Learning

Algorithm 2: FedReG Server
1 Initialize global model weight𝑤𝑔 at random for

Communication round k = 1,2,3,... do
2 Select a set of Clients𝑀 joining in this round
3 Send𝑤 (𝑘 )𝑔 to Client𝑚 ∈ 𝑀
4 Receive 𝐷𝑜𝑚 ,𝐷𝑟𝑚
5 Receive𝑤 (𝑘 )

𝑏,𝑚
,𝑤 (𝑘 )

ℎ𝑔,𝑚
from Client𝑚 ∈ 𝑀

6 Calculate Clients’ aggregation Weight 𝛾𝑏,𝑚 = 𝐷𝑜
𝑚

𝐷𝑜 , 𝛾ℎ,𝑚
= 𝐷𝑟

𝑚

𝐷𝑟

7 Aggregate global model base with𝑤 (𝑘+1)
𝑏,𝑔

=∑𝑀
𝑚=1 𝛾𝑏,𝑚 ×𝑤

(𝑘 )
𝑏,𝑚

8 Aggregate global model head with𝑤 (𝑘+1)
ℎ,𝑔

=∑𝑀
𝑚=1 𝛾ℎ,𝑚 ×𝑤

(𝑘 )
ℎ𝑔,𝑚

9 end

rebalanced dataset. 𝐷𝑒 is the total number of effective samples in
the rebalanced datasets of all clients participating in current round.

The effective samples are the number of samples obtained in the
rebalanced dataset that are not generated through data augmen-
tation. If a client has a target value 𝑡𝑐 , which will be explained in
next subsection, then the number of effective samples is calculated
as follows:

𝐷𝑒𝑚 =

𝑘∑︁
𝑖

𝑒𝑖 , (6)

where 𝑘 is the total number of classes, 𝑖 is the class label, and 𝑒𝑖 is
the number of effective samples in class 𝑖 in the rebalanced dataset.
For classes in the original dataset with fewer samples than 𝑡𝑐 , 𝑒𝑖 is
the number of samples in class 𝑖 , as the other data are generated
through data augmentation. For classes with equal to or more than
𝑡𝑐 , 𝑒𝑖 is 𝑡𝑐 as the data for these classes are reduced to 𝑡𝑐 .

Algorithm 2 presents the pseudo-code for server-side operations
of FedReG.

3.4 Rebalanced Dataset
The rebalanced dataset is generated from the client’s local origi-
nal dataset by first setting a threshold 𝑡 to determine the size of
each client’s rebalanced dataset. This threshold could be the mean,
median, or any other statistical measure derived from the size of
all clients’ original datasets. Once fixed, each client calculates the
number of data samples needed per class 𝑡𝑐 based on the number
of classes 𝑖 they have, given by

𝑡𝑐 = 𝑡/𝑖 . (7)

Upon establishing this value, classes with samples exceeding 𝑡𝑐 will
randomly select 𝑡𝑐 samples, while those with fewer than 𝑡𝑐 samples
will employ data augmentation techniques to increase their count
to 𝑡𝑐 .

The primary goal is to locally train a more balanced model head
𝐻𝑒𝑎𝑑𝐺 , which in turn contributes to a more balanced and generic
model through federated learning aggregation. Figure 4 (cf. Sec-
tion 3.1) depicts the distribution of the rebalanced dataset among
clients when the threshold 𝑡 is chosen to be the average number

Algorithm 3: Generating Rebalanced Dataset
Input: Client Local Dataset 𝑑𝑜,𝑚 , threshold 𝑡

1 Initial empty Rebalanced Dataset 𝑑𝑟,𝑚
2 Calculate 𝑡𝑐 base on local dataset
3 for Class label 𝑖 = 0, 1, 2, · · · , 𝑘 do
4 𝑛𝑖 ← Count quantity of data of class 𝑖
5 end
6 for Class label 𝑖 = 0, 1, 2, · · · , 𝑘 do
7 if 0 < 𝑛𝑖 < 𝑡𝑐 then
8 Generate 𝑡𝑐 − 𝑛𝑖 augmented data base on existed

class 𝑖 data
9 Add augmented data to the Rebalanced Dataset 𝑑𝑟,𝑚

10 Add original data fo class 𝑖 to the Rebalanced Datset
𝑑𝑟,𝑚

11 𝑒𝑖 ← 𝑛𝑖

12 else
13 if 𝑛𝑖 ≥ 𝑡𝑐 then
14 Random Select 𝑡𝑐 data from class 𝑖
15 Add selected data to the Rebalanced Dataset 𝑑𝑟,𝑚
16 𝑒𝑖 ← 𝑡𝑐

17 end
18 end
19 end

of client samples. The original dataset is produced based on the
Dirichlet distribution.

Algorithm 3 presents the pseudo-code for the generation of the
rebalanced dataset.

4 PERFORMANCE EVALUATION
This section will first introduce the baseline algorithms used for
comparison. A description of the used datasets and the implemented
experimental configurations will follow. Subsequently, the section
will explore the optimal configuration of generating the rebalanced
dataset for achieving the best performance with FedReG, including
an analysis of the impact of two key factors: the augmentation
method used to generate the rebalanced dataset and threshold 𝑡 .
Finally, FedReG will be compared with other baseline algorithms
under the optimal configuration, and the advantages of FedReG
over these algorithms are analyzed.

4.1 Setup
The model adopts the ConvNet used in FedDyn [5] and FedRoD [7],
consisting of two convolutional layers, one pooling layer after
each convolutional layer, and three fully connected layers, with the
activation function of the fully connected layers being the ReLU
function.

The used datasets are Cifar10, Cifar100 [14], EMNIST [9], and
FMNIST [28]. The datasets’ training and test sets are first mixed
and then distributed using a Dirichlet distribution with 𝛼 values
of 0.1 and 0.5. Of the distributed data, 75% is used as the training
set for the clients, and 25% as their test set. All clients’ test sets are
combined to form the global model’s test set.

5



Tianyi Liu, Mingkun Yang, and Qing Wang

The communication rounds are set to 100, with 5 local training
rounds for clients, a batch size of 20, an optimizer learning rate of
0.01, and a momentum of 0.9. Our reported performance results are
the averages of five runs with the same experimental configuration.
In each run, the highest global model accuracy (best global model
accuracy) and every client accuracy (best average client accuracy)
out of 100 rounds are recorded and then calculated their average
values.

The global model and all client local models are tested after the
FL server sends out the global model. The average client accuracy is
actually calculated by summing the number of correctly predicted
samples and the total number of samples in the test set, then di-
viding the two. The global model is tested using the combined test
sets of all clients.

For the global model of GPFL[29], we have taken an additional
step of aggregating the generic conditional input and personalized
conditional input from clients as per the provided code[4]. This
aggregation is performed on the server to construct a complete
global model.

In comparison algorithms, PFL algorithms like FedPer, FedRep,
and FedBABU do not have a complete global model for prediction.
The entire local models of clients are aggregated during the aggre-
gation process, and after distributing the global model, clients use
parts of the parameters according to their algorithms. In traditional
FL approaches, local model parameters are identical to global model
parameters. Therefore, for these traditional FL approaches, the ac-
curacy of the model distributed to the local and tested on the local
test set (average client accuracy) is mostly the same as the global
model accuracy in most cases.

4.2 Baselines
The evaluation mainly compares two types of FL approaches. The
first type includes traditional FL schemes such as FedAvg [20], Fed-
Prox [17], and FedDyn [5]. The second type involves PFL schemes
like Ditto [16], FedPer [6], FedRep [10], FedBABU [23], GPFL [29],
and FedRoD [7]. Among these, FedPer, FedRep, FedBABU, GPFL,
and FedRoD are algorithms that, similar to this paper, implement
PFL through parameter decoupling. We also include the hyperpa-
rameter configurations used for different algorithms.
• FedAvg (Federated Averaging) [20]: As mentioned earlier, it

is the earliest FL algorithm. It works by clients learning local
models and then aggregating these models on a centralized FL
server.

• FedProx (Federated Proximity) [17]: The algorithm intro-
duces an additional proximal term in the local optimization
problem to aid in the stability and improvement of the algo-
rithm’s convergence, especially in the face of data heterogeneity
caused by non-IID data distribution. In the experiments, 𝜇 is
set to 0.001, an option used in the original paper [1], and also
used in FedROD [7] for replication and comparison.

• FedDyn (Federated Dynamics) [5]: The algorithm introduces
a dynamic regularizer in the local loss function to align local
model updates more closely with the global model’s optimal
solution.The strength of the dynamic regularizer, 𝛼 , in the algo-
rithm is set to 0.01 in the experiments, referring to the source
code [3].

Simple Augmentation

Auto Augmentation

Origin

Figure 6: Data augmentation on Cifar10 data sample with
auto augmentation and simple augmentation.

• Ditto [16]: A PFL scheme implemented through regularization.
It aims to balance a single global model in FL and a personal-
ized model trained locally without any FL scheme. The training
rounds of the local personalized model become an extra hy-
perparameter, termed personal local step. It is set to 5 in the
experiments.

• FedPer (Federated Personalization) [6]: A PFL algorithm
and one of the main reference algorithms for the paper, imple-
mented through parameter decoupling. The model is split into
a base shared with the FL server and a head retained locally for
personalization, allowing the model to accommodate different
clients’ personalized needs more effectively.

• FedRep (Federated Representation Learning) [10]: A PFL
algorithm that also decouples parameters, splitting the model
into a base shared with the FL server and a locally retained
head. The training rounds of the local personalized model’s
head are an extra hyperparameter, also represented by the
variable personal local step, set to 5 in the experiments.

• FedBABU (Federated Body & Batchnorm Update) [23]: As
a PFL scheme implemented through data decoupling, FedBABU
similarly splits the model into a base and a head. Unlike FedPer,
during training, only the base part is trained and aggregated,
while the head part is fine-tuned with local data for local testing.
This approach primarily enhances the learning capability of
feature representation for image classification tasks in frame-
works. The number of fine-tuning rounds of the head part was
set to 10 in the experiments.

• GPFL [29]: GPFL represents a novel algorithm for PFL achieved
through parameter decoupling. It introduces the Global Cat-
egory Embedding layer (GCE) and Conditional Valve (CoV)
to simultaneously learn global and personalized feature infor-
mation on each client. This approach enables the algorithm to
effectively capture both shared and individual characteristics of
data across different clients. Hyperparameters for GPFL, as per
the provided source code [4], are set to 𝜆 = 0.001 and 𝜇 = 0.1.

• FedRoD (Federated Robust Decoupling) [7]: Another PFL
scheme based on data decoupling and another main reference
algorithm for the paper. It splits the model into a base and two
identical heads, one for aggregation and one for local personal-
ization, and trains the two heads with different loss functions.

4.3 Impact of Augmentation Method and
Threshold 𝑡

In Table 1, “Auto” refers to the Auto Augmentation method with
preset enhancement strategies for datasets like Cifar10, IMAGNET,
and SVHN [11]. “Simple” denotes a basic data augmentation process

6



FedReG: Recouping the Global Model in Personalized Federated Learning

Table 1: Shows the influence of different Data Augmentation
methods on the algorithm with different threshold 𝑡 .

Method 𝑡 Global Acc Average Acc

Auto

Max 53.27% 87.81%
Median 52.58% 89.77%
Average 55.26% 88.90%
Sec-Min 53.57% 90.08%

Simple

Max 59.37% 90.29%
Median 55.84% 89.64%
Average 60.40% 90.25%
Sec-Min 54.66% 90.58%

comprising five different methods: random horizontal flipping, ran-
dom cropping, random rotation, color jitter, and random affine. For
datasets such as FMNIST and EMNIST, which consist of grayscale
images, the color jitter step is omitted.

Table 1 illustrates the impact of different settings on the Cifar10
dataset with 20 participating clients and a participation rate of 0.2
per round. It also compares the effects of two data augmentation
methods under various threshold 𝑡 settings on the performance of
the algorithm by analyzing the generated Rebalanced dataset.

The results in Table 1 suggest that rebalanced datasets generated
using simpler data augmentation methods generally yield higher
global model accuracy. This indicates that employing complex data
augmentation methods to generate the rebalanced dataset does
not necessarily guarantee better performance. This could be due
to the Auto Augmentation-enhanced data introducing excessive
noise for ConvNet, as demonstrated in Figure 6. The data generated
through Auto Augmentation might cause significant feature loss in
the original data, whereas Simple augmentation only slightly alters
the images, retaining the object features within them.

Regarding the selection of threshold 𝑡 , it tends to be an empirical
choice. Nevertheless, it is evident from Table 1 that choosing the
average number of client samples as 𝑡 for generating the Rebalanced
dataset enables FedReG to achieve higher global model accuracy.
The choice of different data augmentation methods and thresholds
𝑡 has a limited impact on improving average client accuracy. Al-
though using the maximum client sample size as t under Simple
augmentation could yield comparable performance, considering
the training overhead, it is advisable to choose the average value
as threshold 𝑡 . This effectively doubles the volume of user data.

4.4 Comparison with the State of the Art
Table 2 shows that FedReG consistently outperforms others in
global model accuracy under all tested conditions.
• Compared to other PFL algorithms that do not specifically op-

timize global model accuracy, such as Ditto, FedPer, FedRep,
FedBABU, and GPFL, which focus on achieving higher average
client accuracy, FedReG shows a significant improvement in
global model accuracy. These algorithms generally have lower
global model accuracy than traditional FL algorithms. The supe-
riority of FedReG is most pronounced on the FMNIST dataset,
with improvements of 4%, 13.8%, 26.94%, 7.86%, 34.38% over
these algorithms.

• Compared to FedRoD, which is specifically designed to enhance
global model performance, FedReG also demonstrates better
global model accuracy in Cifar100, FMNIST, Cifar10, and EM-
NIST. While FedRoD shows superior global model accuracy
over traditional FL algorithms in Cifar10 and EMNIST, it under-
performs FedAvg on the more class-diverse Cifar100 dataset.
FedReG, however, leads FedRoD in global model accuracy on
these four datasets by 2.75%, 2.86%, 0.47%, 0.5%, respectively.

• Compared to traditional FL algorithms, FedReG not only re-
tains the advantage in average client accuracy typical of PFL
algorithms but also surpasses them in global model accuracy.
Across different datasets, FedReG leads the highest-performing
traditional FL algorithms in global model accuracy by 1.33%,
3.81%, 1.45%, 1.3%.

In terms of average client accuracy, FedReG also maintains a
leading position, showing slight improvements relative to other
personalized solutions. However, in Cifar100, FedReG’s average
client accuracy is slightly behind the newer algorithm GPFL, yet
still ahead of all other remaining solutions.

4.5 Scalability Analysis
Table 3 displays the global model accuracy and average client accu-
racy of different algorithms when the Cifar10 dataset is partitioned
among 30, 50, 100, 200, and 500 clients using the Dirichlet distri-
bution. As the number of clients increases from 30 to 500, and the
number of participants in each round ranges from 6 to 100, it’s no-
table that while the join rate remains the same, the actual amount
of data involved in training does not change. However, the data
allocated to each client becomes less.

When the number of clients is relatively small (30 and 50), algo-
rithms like FedRoD and Ditto exhibit higher global model accuracy
compared to traditional FL algorithms. As the number of clients
increases from 30 to 500, a significant decrease in global model
accuracy is observed for algorithms. For instance, the global model
accuracy of FedRoD and Ditto drops from 60.14% and 56.32% to
40.94% and 43.68%, respectively, losing 19.2% and 12.64%. This is
lower than the global model accuracy of traditional FL algorithms.
Traditional FL algorithms are less affected in such scenarios, with
a smaller decline. For example, FedAvg’s global model accuracy
decreases by only 1.45%.

This could be attributed to the fact that in algorithms, apart from
FedRoD, the global model often serves as an intermediate prod-
uct. However, FedReG continues to achieve higher global model
accuracy than all other traditional FL and algorithms, even as the
number of clients increases, while maintaining the highest average
client accuracy. Remarkably, even with 500 clients, the global model
accuracy of FedReG stands at 54.42%, surpassing the highest among
other algorithms, FedAvg, at 53.46%. Its average client accuracy is
87.77%, higher than the highest among other algorithms, at 86.23%.

In Figure 7, by visualizing the log(10 × 𝐺) + log(10 × 𝑃) val-
ues under different numbers of clients, we can also observe the
significant advantage of FedReG in terms of scalability compared
to other state-of-the-art algorithms. It is evident that, apart from
the traditional FL algorithm, the overall performance of the global
model and personal model in FedReG consistently outperforms the
PFL baselines.

7



Tianyi Liu, Mingkun Yang, and Qing Wang

Table 2: Comparisons of accuracy between various algorithms and FedReG. In the table, columns labeled ‘G’ and ‘P’ denote the
highest global model accuracy and the best average accuracy of the personal model, respectively. The abbreviation ‘Jr.’ indicates
the proportion of clients participating in training per communication round, while ‘Alg.’ represents the name of the algorithm.
The data were tested across four different datasets: Cifar100, FMNIST, Cifar10, and EMNIST. The testing involved 50 clients,
with data distribution managed via the Dirichlet distribution, setting 𝛼 to 0.1. FedReG outperforms other algorithms in global
model accuracy.

Dataset Cifar100 FMNIST Cifar10 EMNIST

Alg.
Jr. 0.2 0.2 0.2 0.2

G P G P G P G P
FedAvg 22.74% 22.74% 84.27% 84.27% 56.67% 56.67% 83.69% 83.69%
FedProx 23.40% 23.40% 84.54% 84.54% 55.70% 55.70% 83.59% 83.59%
FedDyn 17.05% 17.05% 83.43% 83.43% 53.94% 53.94% 82.54% 82.54%

Ditto 22.71% 43.58% 84.35% 96.53% 55.89% 84.27% 83.38% 92.21%
FedPer 13.81% 48.67% 74.55% 97.32% 40.41% 86.27% 69.66% 95.02%
FedRep 6.21% 37.20% 61.41% 97.20% 41.96% 86.39% 52.34% 93.36%
FedBABU 20.13% 43.93% 80.49% 80.49% 45.23% 86.03% 80.47% 92.03%
GPFL 11.13% 56.91% 53.97% 94.38% 32.14% 83.66% 48.62% 94.88%

FedRoD 21.98% 48.13% 85.49% 97.27% 57.65% 87.32% 84.49% 95.59%

FedReG 24.73% 50.26% 88.35% 97.52% 58.12% 87.59% 84.99% 95.84%

Table 3: Scalability analysis. The table presents the scalability of different algorithms tested on the Cifar10 dataset, with the
Dirichlet distribution parameter 𝛼 set at 0.1 and a joining rate of 0.2. During the tests, the batch size is adjusted based on the
number of clients to manage computational resources effectively and ensure fair comparison. Specifically, the batch size is set
to 10 when testing with 100 clients, and it is reduced to 1 for tests involving 200 and 500 clients.

Alg.
Client 30 50 100 200 500

G P G P G P G P G P
FedAvg 54.91% 54.91% 56.67% 56.67% 49.50% 49.50% 53.97% 52.87% 53.46% 53.46%
FedProx 55.87% 55.87% 55.70% 55.70% 51.32% 51.32% 51.84% 51.84% 43.89% 43.89%
FedDyn 55.08% 55.08% 53.94% 53.94% 51.75% 51.75% 50.49% 50.49% 47.23% 47.23%

Ditto 56.32% 85.85% 55.89% 84.27% 49.39% 84.68% 52.23% 84.01% 43.68% 80.83%
FedPer 43.09% 88.01% 40.41% 86.27% 44.22% 87.93% 43.45% 87.18% 41.26% 84.49%
FedRep 42.15% 87.75% 41.96% 86.39% 36.25% 85.91% 37.10% 86.72% 31.94% 81.16%
FedBABU 50.36% 86.79% 45.23% 86.03% 39.42% 85.18% 46.17% 86.88% 38.79% 82.26%
GPFL 32.29% 84.19% 32.14% 83.66% 37.10% 84.31% 32.71% 84.81% 36.66% 85.75%

FedRoD 60.14% 87.99% 57.65% 87.32% 49.85% 88.38% 51.61% 88.84% 40.94% 86.23%

FedReG 60.50% 88.45% 58.12% 87.59% 57.70% 89.20% 55.91% 88.90% 54.42% 87.77%

4.6 Robustness Analysis
In robustness analysis, we evaluate the robustness of an algorithm’s
global model accuracy to changes in data distribution heterogeneity.
This is quantified by measuring the decrease in global model accu-
racy as the Dirichlet 𝛼 value decreases, under otherwise unchanged
configurations.

Table 4 presents the performance of various algorithms on Ci-
far10 and FMNIST datasets with 100 clients, under different 𝛼 val-
ues of the Dirichlet distribution. As observed in Table 4, with a
Dirichlet 𝛼 of 0.5 (indicating a relatively uniform data distribution
among clients), the global model accuracy of FedReG on Cifar10
and FMNIST is 62.15% and 90.38%, respectively. When the Dirichlet
𝛼 decreases to 0.1, the accuracies of FedReG on Cifar10 and FMNIST
drop to 57.70% and 88.21%, respectively, showing decreases of 4.45%
and 2.17%.

Comparatively, focusing primarily on the Cifar10 dataset, tradi-
tional FL algorithms such as FedAvg, FedProx, and FedDyn exhibit
decreases of 10.7%, 9.12%, and 5.81%, respectively. Other algorithms
like Ditto, FedPer, FedRep, FedBABU, GPFL, and FedRoD show
declines of 11.43%, 9.71%, 7.47%, 10.23%, 28.21%, and 9.84%, respec-
tively.

FedReG demonstrates a smaller impact from increased data dis-
tribution heterogeneity compared to other algorithms, maintaining
the highest global model accuracy and average client accuracy both
before and after the decrease in 𝛼 . A similar trend is observable
in the FMNIST dataset, indicating that FedReG possesses higher
robustness compared to other algorithms in the face of data hetero-
geneity challenges.

8



FedReG: Recouping the Global Model in Personalized Federated Learning

Table 4: Robustness analysis. Table illustrates the impact of different Dirichlet 𝛼 values on the accuracy of various algorithms,
under the condition of 100 clients and a join rate of 0.2.

Dataset Cifar10 FMNIST

Alg.
𝛼 0.1 0.5 0.1 0.5

G P G P G P G P
FedAvg 49.50% 49.50% 60.20% 60.20% 81.27% 81.27% 87.61% 87.61%
FedProx 51.32% 51.32% 60.44% 60.44% 80.65% 80.65% 87.47% 87.47%
FedDyn 51.75% 51.75% 57.56% 57.56% 84.08% 84.08% 87.44% 87.44%

Ditto 49.39% 84.68% 60.82% 60.82% 81.63% 96.21% 87.69% 87.69%
FedPer 44.22% 87.93% 53.93% 67.49% 80.06% 97.42% 87.28% 92.01%
FedRep 36.25% 85.91% 43.72% 61.17% 61.43% 96.59% 77.61% 88.22%
FedBABU 39.42% 85.18% 49.65% 64.82% 75.48% 95.34% 83.88% 87.88%
GPFL 30.18% 84.31% 58.39% 73.73% 61.98% 95.67% 85.79% 92.81%

FedRoD 49.85% 88.38% 59.69% 73.94% 80.01% 96.74% 87.32% 93.10%

FedReG 57.70% 89.20% 62.15% 74.06% 88.21% 97.58% 90.38% 94.18%

30 50 100 200 500
Number of Clients

1.2

1.3

1.4

1.5

1.6

1.7

1.8

lo
g(

10
G)

+l
og

(1
0P

)

FedAvg
FedProx

FedDyn
Ditto

FedPer
FedRep

FedBABU
GPFL

FedRoD
FedReG

Figure 7: We propose an overall metric log(10×𝐺) + log(10×𝑃)
where𝐺 and 𝑃 are the best top-1 accuracy of the global model
and personal model, respectively.

4.7 Ablation Study
Figure 8 illustrates the testing of four algorithmic variants to assess
the global model accuracy under different conditions:

a) Employs the aggregation method of traditional FL, where
both the base and the head of the global model are aggre-
gated using the same weight calculation method.

b) Removes the additional head introduced; clients train se-
quentially on the original dataset and the rebalanced dataset
on the same complete base and head model for the aggre-
gation of the global model.

c) Eliminates the rebalanced dataset; the HeadG used for ag-
gregation is trained successively with the original dataset.

d) Removes the step of training the complete model with the
original dataset first, using only the rebalanced dataset for
training the complete model.

'

ClientsServer

HeadP

HeadG

Base

ClientsServer

ClientsServer ClientsServer

Upload partsRebalanced Dataset

Original Dataset

a b

c d

Figure 8: Ablation study.

In Figure 8, 𝑔(𝐷) is the formula used for calculating the model
aggregation weights. The equation is given as:

𝑔(𝐷) =

𝑀∑︁
𝑚=1

𝐷𝑚

𝐷
𝑤𝑚 . (8)

These variants were tested as depicted, focusing on the global
model’s accuracy. Variant (a) aims to demonstrate the effectiveness
of our algorithm’s modifications to the global model aggregation
weights. Variants (b) and (c) are designed to confirm the impact
of the specially introduced head and the rebalanced dataset for
global model aggregation. Variant (d) aims to verify the effect of
the clients’ training framework, which involves sequential training
with the original and rebalanced datasets, on the global model.

Data from Table 5 indicates that variant (a) experiences a 2.06%
drop in accuracy using the traditional FL aggregation. Since the
HeadG, used for global model aggregation, is trained with the re-
balanced dataset generated from the users’ local original data, it
is more sensible to compute the aggregation weight of the global
model’s head based on the effective sample size.

9



Tianyi Liu, Mingkun Yang, and Qing Wang

Table 5: The table presents an ablation study comparison ta-
ble. The experiments are conducted using the Cifar10 dataset,
with a join rate set at 0.2 and the Dirichlet 𝛼 parameter fixed
at 0.1.

FedReG a b c d FedAvg
60.50% 58.44% 56.65% 58.23% 55.04% 54.91%

In variant (b), the removal of an additional head, whether it be
the client-side HeadP or the aggregation HeadG, shifts the training
to involve two datasets training a single complete model. This
results in a 3.85% decrease in accuracy, suggesting that sequential
training with the original training set and the rebalanced dataset
could confuse the model head’s understanding of data distribution,
reducing the accuracy.

For variant (c), excluding the extra rebalanced dataset results in a
2.27% reduction in accuracy, likely due to the absence of rebalanced
dataset fine-tuning for HeadG, which diminishes the aggregated
global model’s precision.

Finally, variant (d) shows a 5.46% decrease in accuracy after the
step of initial training with the original data is removed, yet it still
represents a slight improvement over the FedAvg global model.
Compared to variant (b), the absence of original data training and
relying solely on the rebalanced dataset might weaken the base
part of the model’s feature learning compared to the performance
after training with the original data. Nonetheless, the adjustments
in data distribution by the rebalanced dataset still afford a minor
enhancement in global model accuracy.

5 TESTBED VALIDATION
For the algorithm discussed earlier, we have also conducted tests
on actual devices. The testbed utilized consists of 10 NVIDIA Jet-
son Nanos[21], serving as clients running the federated learning
algorithm, a Lenovo R9000K laptop functioning as the federated
learning server and the MQTT message broker[22], and a TP-Link
AX3000 router connecting Jetson Nanos and the laptop to form a
FL testbed.

The algorithms tested are the same as those listed in the pre-
vious tables, and the dataset used for testing is Fashion-MNIST.
There are 30 users in total, with each Jetson Nano simulating three
clients sequentially. The model used for testing is still ConvNet.
The participation rate for each training round is 0.2, meaning 6 out
of 30 clients are chosen to participate in each round. The reasons
for selecting the Fashion-MNIST dataset and ConvNet are due to
their relative simplicity, which does not occupy excessive VRAM
and memory on Jetson Nano, allowing for quicker testing speeds.

Accuracy testing for each round is conducted at the start of the
round, after the server sends the aggregated model to all clients.
The global model, aggregated on the laptop-simulated server, is
tested on the server using a complete dataset compiled from all
clients’ test sets, i.e., the test set of the original dataset. Unlike the
simulation phase, client accuracy is first tested using the locally
trained model from the previous round.

After testing, clients send the number of correctly predicted
samples and the total number of samples to the server. The server
then sends the aggregated weights to all clients for updating. Hence,

Figure 9: Our testbed: 10 Jetson Nano embedded devices con-
nect to an FL server wirelessly via a TP-Link Router.

Table 6: Validation on testbed using the Fmnist dataset with
30 clients, Dirichlet 0.1, and join rate of 0.2.

Dataset FMNIST
Joint rate 0.2
Acc type Global Personalized
FedAvg 82.13% 98.05%
FedProx 81.18% 98.05%
FedDyn 83.68% 97.75%

GPFL 48.30% 97.46%
Ditto 81.41% 97.65%
FedPer 72.27% 98.29%
FedRep 59.75% 97.88%
FedBABU 78.73% 97.76%
FedRoD 83.96% 98.01%

FedReG 86.12% 98.25%

for traditional federated learning algorithms, different global model
accuracies and average client accuracies are expected compared to
the simulation phase.

The testbed’s communication is implemented via MQTT, with
nine topics facilitating the communication process during federated
learning.

Table 6 shows the test results generated during the testbed vali-
dation process. It can be observed that under the Fashion-MNIST
dataset, with 30 clients, our algorithm, FedReG, still aligns with pre-
vious conclusions, demonstrating high global model accuracy while
maintaining average client accuracy without significant decline.
Compared to FedRoD and other PFL algorithms as well as tradi-
tional FL algorithms, it achieves higher accuracy, and also shows a
slight improvement in average client accuracy over all algorithms
except FedPer, ensuring that accuracy is not compromised.

10



FedReG: Recouping the Global Model in Personalized Federated Learning

6 CONCLUSION AND FUTUREWORK
In this paper, we have designed FedReG, a personalized learning
solution through data decoupling, aiming to address the perfor-
mance degradation in the global model due to data heterogeneity in
federated learning. It has been validated on image data, demonstrat-
ing global model performance and average accuracy on par with
FedRoD, an algorithm specifically devised to optimize global model
accuracy in personalized federated learning. Compared to FedRoD,
FedReG exhibits superior global model performance, showcasing
enhanced scalability and robustness. Furthermore, when compared
to other traditional federated learning algorithms and personalized
federated learning algorithms such as GPFL and FedBABU, the ad-
ditional introduction of the rebalanced dataset and head has not
led to a decrease in client average accuracy, but instead, there has
been a slight improvement.

The threshold 𝑡 used in the experiments above was chosen em-
pirically. A future research direction could be to determine a more
rational threshold 𝑡 that reduces local training overhead while main-
taining algorithm accuracy is a worthwhile avenue of exploration.
Additionally, investigating whether FedReG can be effectively com-
bined with other algorithms that enhance client average accuracy
or global model performance is also a promising endeavor worth
pursuing.

REFERENCES
[1] 2021. Federated Optimization in Heterogeneous Networks. https://github.com/

litian96/FedProx. Last accessed: Nov. 22, 2023.
[2] 2022. Exploiting Shared Representations for Personalized Federated Learning

(ICML 2021). https://github.com/lgcollins/FedRep.
[3] 2022. Federated Learning Based on Dynamic Regularization. https://github.com/

alpemreacar/FedDyn. Last accessed: Nov. 22, 2023.
[4] 2023. GPFL. https://github.com/TsingZ0/GPFL.
[5] Durmus Alp Emre Acar and et al. 2021. Federated learning based on dynamic

regularization. arXiv preprint arXiv:2111.04263 (2021).
[6] Manoj G. Arivazhagan, Vinay Aggarwal, Aaditya K. Singh, and Sunav Choudhary.

2019. Federated Learning with Personalization Layers. arXiv:1912.00818 [cs.LG]
[7] Hong-You Chen and Wei-Lun Chao. 2022. On Bridging Generic and Personalized

Federated Learning for Image Classification. arXiv:2107.00778 [cs.LG]
[8] Yong Cheng, Yang Liu, Tianjian Chen, and Qiang Yang. 2020. Federated learning

for privacy-preserving AI. Commun. ACM (2020).
[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.

EMNIST: Extending MNIST to handwritten letters. In IEEE IJCNN.
[10] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. 2021.

Exploiting Shared Representations for Personalized Federated Learning. In Pro-
ceedings of the ICML. https://proceedings.mlr.press/v139/collins21a.html

[11] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
2019. Autoaugment: Learning augmentation strategies from data. In Proceedings
of the IEEE/CVF CVPR.

[12] Lydia de la Torre. 2018. A guide to the california consumer privacy act of 2018.
Available at SSRN 3275571 (2018).

[13] Peter Kairouz and et al. 2021. Advances andOpen Problems in Federated Learning.
Foundations and Trends® in Machine Learning 14 (2021). https://doi.org/10.1561/
2200000083

[14] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features
from tiny images. (2009).

[15] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. 2020. Survey of personal-
ization techniques for federated learning. In IEEE WorldS4.

[16] Tian Li and et al. 2021. Ditto: Fair and robust federated learning through person-
alization. In ICML.

[17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems (2020).

[18] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2020.
On the Convergence of FedAvg on Non-IID Data. arXiv:1907.02189 [stat.ML]

[19] Wei Lim and et al. 2020. Federated learning in mobile edge networks: A compre-
hensive survey. IEEE Communications Surveys&Tutorials (2020).

[20] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of AISTATS. https://proceedings.mlr.
press/v54/mcmahan17a.html

[21] NVIDIA. 2024. Jetson Nano Developer Kit. https://developer.nvidia.com/
embedded/jetson-nano-developer-kit.

[22] OASIS Standard. 2015. MQTT Version 3.1.1 Plus Errata 01. https://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[23] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. 2022. FedBABU:
Towards Enhanced Representation for Federated Image Classification.
arXiv:2106.06042 [cs.LG]

[24] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[25] Canh T Dinh and et al. 2020. Personalized federated learning with moreau
envelopes. Advances in Neural Information Processing Systems (2020).

[26] Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards Personalized Federated
Learning. IEEE Transactions on Neural Networks and Learning Systems (2022),
1–17. https://doi.org/10.1109/TNNLS.2022.3160699

[27] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data protection reg-
ulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer International Publishing
10, 3152676 (2017), 10–5555.

[28] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[29] Jianqing Zhang and et al. 2023. Gpfl: Simultaneously learning global and person-
alized feature information for personalized federated learning. In Proceedings of
IEEE/CVF ICCV.

[30] Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. IEEE Transac-
tions on Knowledge and Data Engineering (2021).

[31] Yue Zhao and et al. 2018. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582 (2018).

[32] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. 2021. Federated learning
on non-IID data: A survey. Neurocomputing 465 (2021), 371–390. https://doi.
org/10.1016/j.neucom.2021.07.098

11

https://github.com/litian96/FedProx
https://github.com/litian96/FedProx
https://github.com/lgcollins/FedRep
https://github.com/alpemreacar/FedDyn
https://github.com/alpemreacar/FedDyn
https://github.com/TsingZ0/GPFL
https://arxiv.org/abs/1912.00818
https://arxiv.org/abs/2107.00778
https://proceedings.mlr.press/v139/collins21a.html
https://doi.org/10.1561/2200000083
https://doi.org/10.1561/2200000083
https://arxiv.org/abs/1907.02189
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://arxiv.org/abs/2106.06042
https://doi.org/10.1109/TNNLS.2022.3160699
https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/10.1016/j.neucom.2021.07.098

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Personalized Federated Learning

	3 FedReG Design
	3.1 Overview
	3.2 Local Training on FedReG Client
	3.3 Federated Learning on FedReG Server
	3.4 Rebalanced Dataset

	4 Performance Evaluation
	4.1 Setup
	4.2 Baselines
	4.3 Impact of Augmentation Method and Threshold t
	4.4 Comparison with the State of the Art
	4.5 Scalability Analysis
	4.6 Robustness Analysis
	4.7 Ablation Study

	5 TestBed Validation
	6 Conclusion and Future work
	References

