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ABSTRACT
Continuous learning, crucial for applications with sequentially

arriving data, enables dynamically acquiring new skills without

forgetting previous knowledge. The deep learning community has

devised various strategies to address the challenge of ’catastrophic

forgetting’, successfully achieving long-term knowledge retention.

Nonetheless, the intricate floating-point computations inherent

in neural models result in considerable computational demands

and energy usage, making these approaches unsustainable. This

motivates us to explore the untapped potential of an emerging

logic-inspired alternative, the Tsetlin Machine (TM), which has

demonstrated state-of-the-art performance in various applications.

We develop an Adaptive Tsetlin Machine (AdaTM) - The first end-

to-end continual learning solution solely relying on propositional

logic operations, suited for edge computing devices. AdaTM is

constructed through dynamically expanding model architecture to

accommodate new learning tasks. Furthermore, we implemented

a class-balance memory buffer and optimal states selection tech-

niques to combat knowledge fading and introduced a clause con-

fidence score-based pruning strategy for scalability. Importantly,

AdaTM’s adaptability is accommodated without the need for com-

putationally expensive recalibrations commonly associated with

neural networks leading to high-efficiency gains. The adaptability

and efficiency set the AdaTM apart, making it particularly well-

suited for real-world applications where resources are constrained,

such as edge devices and for on-device learning. Extensive empirical

evaluations across multiple datasets and computational environ-

ments such as Raspberry Pi have been performed on key metrics

such as average accuracy, forgetting measure, processing latency,

and run-time memory. Specifically, AdaTM achieves up to 25%
higher accuracy while using approximately 35x less memory and

ensuring competitive run time latency. Overall, our AdaTM pio-

neers how to equip logic-based models with long-term knowledge

preservation without relying on complex architectures and compu-

tations of conventional neural network-based continual learning.
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• Computing methodologies → Artificial intelligence; Ma-
chine learning approaches; •Hardware→ Power estimation and
optimization.
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Figure 1: Overview of the AdaTM architecture.

1 INTRODUCTION
Continual learning is essential for machine intelligence, striving

for human-like adaptability by accumulating knowledge from di-

verse experiences. In this approach, models constantly adapt to

new tasks and data, preserving prior knowledge. This adaptability

is vital in applications ranging from robotics to natural language

processing and is especially crucial in real-time response settings.

Take a home assistive robot with on-edge continual learning as an

example. Such a robot can personalize services through ongoing

adaptation to user interactions and preferences, markedly enhanc-

ing user experience and operational efficiency. However, challenges

like "catastrophic forgetting" arise, where models lose proficiency

in old tasks when learning new ones[11, 19]. This problem is in-

tensified by the class-incremental nature, leading to the potential

need for retraining, further stressing computational and energy

resources. These constraints become more pronounced in quick

decision-making scenarios or resource-restricted settings like edge

computing[2].

Numerous algorithms and techniques target effective continual

learning. Methods like Elastic Weight Consolidation (EWC)[12]

and Synaptic Intelligence (SI)[15] prevent forgetting through pa-

rameter regularization, while replay techniques like Experience

Replay (ER)[4] and Deep Generative Replay (DGR)[25] use stored

or generated examples to preserve past knowledge. iCaRL[23], a

template-based method, utilizes class mean features to address for-

getting. Despite these advances, each approach has its shortcomings.

Many cannot rival the performance of joint training, and struggle

with introducing new class categories. Neural network-based replay

methods also heighten computational and energy demands. These

challenges, although sometimes overshadowed by accuracy metrics,

become pivotal in applications demanding on-device efficiency like

edge AI. In this case, the Tsetlin Machine (TM) offers a unique av-

enue for exploration and is designed to bring a balanced approach

to performance and computational efficiency. However, developing
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effective continual learning solutions for the Tsetlin Machine frame-

work presents a notable challenge due to the distinct logic-based

structure of TMs. This incompatibility means existing techniques

for neural networks are not directly applicable, marking a clear

divergence. This mismatch has not been extensively explored in

prior research, representing a substantial challenge which is crucial

for advancing TMs in computationally efficient applications.

Derived from automata theory, TM employs state-based decision-

making and simple yet effective learning mechanisms[8]. It uses

conjunctive clauses for feature representation and reinforcement

learning for automata to refine decisions based on their quality. This

design enables TM to tackle intricate pattern recognition tasks with

fewer computational demands than neural networks. Furthermore,

TM has shown competitive results on several benchmark inference

tasks[3, 9, 22], underscoring its potential in the continual learning

space. However, implementing continual learning with TM presents

unique challenges. Key concerns include: 1). How can we dynami-

cally expand the architecture to accommodate the evolving nature

of continual learning with progressively arriving tasks and classes?

2). How might we balance the computational simplicity intrinsic

to TM with consistent performance in a continual learning envi-

ronment? 3). Moreover, as the model grows, how do we safeguard

the efficiency advantages that set TM apart? 4). Most importantly,

how can these concepts be effectively implemented in this novel

and emerging model structure? Addressing these technical and im-

plementation challenges, we propose AdaTM . Unlike the intricate

recalibrations in neural networks, AdaTM features dynamic model

expansion: it spawns new TMs tailored for one-vs-all, budget-fixed,

class-balanced replay as new classes appear. This adaptability is

maintained without the computational and energy strains common

to conventional methods, courtesy of efficient logic operations. We

also developed a pruning method to optimize AdaTM’s efficiency

further.

In our rigorous tests, AdaTM consistently surpasses neural

network-based continual learning algorithms in average accuracy,

forgetting measure, processing speed, and run-time memory on

both a laptop and a Raspberry Pi Model 4B. The main contributions

of our study include– (1) AdaTMDesign forContinual Learning:
AdaTM is our pioneering exploration of TM architecture designed

for continual learning. This design ensures dynamic adaptability to

new data, efficiently learning incrementally and integrating knowl-

edge. AdaTM stands out in resource-constrained scenarios due to

its inherent simplicity and computational efficiency. A key feature

is its ability to automatically generate new TMs for each new class,

emphasizing seamless and recalibration-free learning progression;

(2) Efficient Pruning Mechanism within AdaTM: Addressing
potential inefficiencies inmodel growth, we have developed a clause

confidence score-based pruning mechanism. This ensures the re-

moval of non-essential clauses, thus maintaining a lean and efficient

model. This approach further upholds the preservation of decision

quality and operational efficiency, especially vital for applications

in resource-limited settings; (3) Robust Empirical Validation of
AdaTM: AdaTM’s capabilities were rigorously tested across mul-

tiple datasets and environments. Our findings revealed its notable

performance, with up to 25% improved accuracy compared to lead-

ing neural network-based methods, while using significantly less

memory. AdaTM’s processing speed and consistent performance,

even on platforms like the Raspberry Pi Model 4B, emphasize its

potential as a front-runner in the continual learning domain.

2 RELATEDWORK
Achieving flexible, human-like continual learning is still an open

question. Van et al.[27] have classified continual learning into

three primary scenarios: task-incremental, domain-incremental,

and class-incremental learning. With this foundational understand-

ing, we delve into an exploration of the prevailing methodologies

in the subsequent sections. Specifically, given our paper’s emphasis,

our discussion will be centred on continual learning and Tsetlin

Machines.

2.1 Continual Learning Strategies
For developing effective continual learning, various strategies have

emerged to counteract catastrophic forgetting. They largely en-

compass regularization mechanisms, replay methods, and template-

based solutions.[27].

2.1.1 Regularization. Elastic Weight Consolidation (EWC)[12], in-

spired by synaptic consolidation theories, employs a quadratic

penalty based on the Fisher information matrix to preserve es-

sential weight changes, thus retaining prior knowledge. Although

EWC excels with MNIST and Atari games, it has constraints like

depending on a Laplace approximation. Learning without Forget-

ting (LwF)[15] utilizes knowledge distillation to maintain prior task

performance without old data, outperforming methods like Less

Forgetting Learning[10]. Still, it occasionally shows minor past-

task performance declines and requires task labels. LwF typically

provides better new-task performance and adaptability than EWC.

Synaptic Intelligence (SI)[29], an EWC derivative, optimizes com-

putational efficiency by continuously assessing weight significance.

Despite its success in tests like split MNIST, its reliance on cer-

tain SGD approximations and hyperparameters necessitates further

comprehensive evaluations.

2.1.2 Template-based. Although regularization techniques miti-

gate catastrophic forgetting, they often fall short in class-incremental

contexts[27], giving rise to template-based methods. Van et al.[26]

transitioned from discriminative to generative classifiers, convert-

ing the class-incremental issue into a task-incremental one. Using

distinct Variational Autoencoders (VAE) for each class, they sidestep

data storage or replay, outdoing other rehearsal-free approaches.

Yet, the model’s scalability is questionable due to separate gener-

ative models per class, and occasionally, VAEs produce inferior

samples with resource-heavy inference. Earlier, Rebuffi et al.[23]

presented iCaRL, which conserves data efficiently using fewer ex-

emplars. Its blend of distillation loss and nearest-mean classifiers

bolsters its strength. Still, it sees escalating computational demands

with more classes and doesn’t quite match full batch training per-

formance.

2.1.3 Replay. While template-based methods introduce unique

approaches to continual learning, they grapple with computational

and scalability issues. Replay methods offer an alternative, using

’replayed’ memory samples during new task learning. A standout is

Chaudhry et al.’s experience replay[5], which notably outperforms

methods like GEM[16] and A-GEM[4]. Impressively, significant
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gains result even from a single example-per-class, thanks to im-

plicit regularization. Shin et al.’s DGR[25] sidesteps data storage

but hinges on its generative model quality, making it less suitable

for quick sample generation. GDumb[20] adopts a straightforward

two-step approach, utilizing a balanced class distribution and re-

training networks from the beginning. Surprisingly, its performance

surpasses intricate methods across benchmarks, highlighting the

strength of balanced memory replay and questioning traditional

continual learning perspectives.

While the above efforts address catastrophic forgetting, literature

often points to the simplicity of replay methods as equally or more

effective than complex techniques. This simplicity is not just appeal-

ing but also pragmatic. As we move towards resource-conscious

environments, harnessing this simplicity grows in importance.

2.2 Efficient Continual Learning
Continual learning on edge devices requires a delicate balance of

adaptability, performance, and efficiency. With the rise of on-device

applications, model efficiency is paramount. Miro et al.[17] pro-

posed a dynamic approach for edge devices using a hierarchical

episodic memory, targeting both energy efficiency and accuracy.

Yet, deep learning models remain energy-intensive. Kwon et al.[13]

empirically assessed continual learning methods for mobile sensing

on platforms like Jetson Nano GPU and smartphones. iCaRL stood

out in performance, but its deep learning foundation brings inher-

ent computational challenges, especially in real-world efficiency

contexts. Wang et al.[28] also highlighted iCaRL’s strengths and

concerns in mobile sensing.

In essence, despite promising research in continual learning, the

computational strain of deep learning cannot be ignored. The ideal

approach would focus on efficient continual learning, blending

algorithmic innovation with structural enhancements to minimize

computational demands.

2.3 Tsetlin Machines
Rooted in automata theory, TMs use propositional logic for com-

putation, offering both simplicity and interpretability[8]. Their

utility spans text classification, audio keyword spotting, and sen-

timent analysis[14, 24], with specialized versions expanding their

reach[6, 7, 9]. Recent tools, such as REDRESS, highlight TM’s suit-

ability for edge devices, boasting impressive speed and compression

against binary neural networks[18]. The Lite-TM framework then

propelled TMs to a new efficiency level, employing memory and

latency-reducing techniques and adapting to energy resources[1].

This optimization outperformed certain binarized neural networks

in energy efficiency and accuracy, especially in energy-harvesting

scenarios.

While these advancements have broadened the horizons for TMs

in various computational contexts, our research narrows the focus

to a domain where TMs have yet to be explored. Specifically, our

work represents a pioneering effort to harness the capabilities of

TMs in continual learning. By addressing challenges such as mem-

ory footprint, latency, and dynamic adaptation to energy resources,

we demonstrate that TM offers substantial advantages over deep

neural networks, particularly in the context of continual learning

across diverse computing platforms.

3 PRELIMINARIES OF TSETLIN MACHINES
Having highlighted the potential of TMs as a promising solution for

continual learning, it is crucial to understand the machinery that

powers this innovative paradigm. This section aims to elucidate

the origins, mechanics, and advanced variants of TMs, setting the

groundwork for our exploration of its application in continual

learning.

3.1 Foundations in Automata Theory
Automata theory studies the behaviours of abstract computing

devices, emphasizing their state transitions based on inputs. The

Tsetlin Automaton, pivotal to this theory, underpins TM. This learn-

ing automaton, with its finite states, defines specific actions and

refines them based on environmental feedback, either rewards or

penalties. By making small adjustments, the Tsetlin Automaton ex-

cels at identifying the best actions in diverse contexts, enabling TM

to process data and progressively learn. For simplification, TM is

essentially a system that selects and combines features to efficiently

recognize and classify various patterns.

3.2 Basic Mechanics
TMs offer an alternative paradigm to traditional neural networks.

Contrary to employing continuous weights, TMs rely on conjunc-

tive clauses constructed from binary input variables 𝑥1, . . . , 𝑥𝑛 or

their negations ¬𝑥1, . . . ,¬𝑥𝑛 . These clauses, utilizing Tsetlin Au-

tomata (TA) Teams, capturing unique data patterns, are represented

as:

𝑐 𝑗 (𝑋 ) =
∧

𝑙𝑘∈𝐿𝑗

𝑙𝑘 (1)

where 𝑐 𝑗 (𝑋 ) evaluates to 1 if every literal in its set is true. The

literals in 𝑐 𝑗 are determined by the state of the Tsetlin Automaton,

which adapts in response to environmental feedback. This ensures

the formation of diverse clauses that encapsulate intricate data

patterns. In stark contrast to many neural networks, TMs offer an

advantage in operational transparency. For classification purposes,

TMs compute the sum of outputs from both positive and negative

clause groups, subsequently applying a threshold:

𝑠𝑢𝑚(𝑋 ) =
𝑚/2∑︁
𝑗=1

𝑜+𝑗 −
𝑚/2∑︁
𝑗=1

𝑜−𝑗 (2)

The resultant classification is then ascertained by:

𝑦 =

{
1 if 𝑠𝑢𝑚(𝑋 ) ≥ 0,

0 otherwise.

(3)

By leveraging this logical mechanism, TMs adeptly recognize and

differentiate complex data patterns.

3.3 Learning Dynamics
TM refines its clauses through a sophisticated feedback mechanism,

as presented in [8], to achieve enhanced pattern recognition accu-

racy. This learning process is governed by two distinct feedback

types:

Type I Feedback:
• Activated when the output 𝑦 aligns with the polarity 𝜔 for

a clause 𝑐𝜔
𝑗
.
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Figure 2: Visualization of the key components of TMs and their roles in the decision-making process.

• Rewards the "Include" action and penalizes the "Exclude"

action when the clause output is 1, aiming to boost the

number of clauses that evaluate correctly to 1.

• Utilizes probabilities 𝑝 (Reward) = 𝑠−1
𝑠 , 𝑝 (Penalty) = 𝑠−1

𝑠 ,

and 𝑝 (Inaction) = 1

𝑠 dependent on the clause output, literal

value, and automaton action. Herein, 𝑠 is the user-defined

hyperparameter.

Type II Feedback:

• Engaged when the output 𝑦 does not match the polarity 𝜔

for a clause 𝑐𝜔
𝑗
.

• Penalizes "Exclude" actions for literals that evaluate to 0

when the clause output is 1, driving the inclusion of literals

to augment discrimination power.

• Applies solely "Inaction" feedback when the clause output

is 0 to prevent entrapment in local minima.

• Uses 𝑝 (Penalty) = 1 when excluding a 0 literal and the

clause output is 1. In other instances, only "Inaction" feed-

back is applied.

Together, Type I feedback amplifies the prevalence of correct 1 out-

puts, while Type II feedback incorporates literals to steer clauses

to evaluate to 0 when required. Collectively, these feedback mech-

anisms aim to minimize expected output discrepancies and guide

the TA towards optimal clause configurations.

3.4 Tsetlin Machine Variants
Beyond the standard TM, various TM variants address distinct

challenges and improve its efficacy. The most notable are the Con-

volutional TM (CTM) and the Weighted TM (WTM).

3.4.1 Convolutional Tsetlin Machine. Inspired by convolutional

neural networks (CNNs), the CTM combines TMwith convolutional

strategies. Instead of processingwhole images, clauses in CTM serve

as convolutional filters for specific image segments, enhancing the

detection of localized patterns. For an image of size 𝑋 × 𝑌 with a

𝑊 ×𝑊 filter, the CTM yields N outputs, each representing a distinct

image patch. These outputs converge via an OR operation, giving

an overall clause response. Image patches are further enriched with

coordinate information, ensuring spatial sensitivity. The CTM’s

learning leverages feedback from random patches among the N

outputs, emphasizing localized learning.

3.4.2 Weighted Tsetlin Machine. The WTM evolves the traditional

TM by assigning a weight, denoted by 𝑤 𝑗 , to every clause 𝑐 𝑗 . Its

hallmark is the weighted sum:

𝑠𝑢𝑚′ (𝑋 ) = Σ(𝑤+
𝑗 · 𝑜

+
𝑗 ) − Σ(𝑤−

𝑗 · 𝑜−𝑗 ) (4)

This ensures each clause’s impact on the final decision mirrors

its weight. It thus emulates the effects of multiple same clauses

through weight enhancement, refining the model’s design. Frac-

tional weights enable nuanced clause influence adjustments. The

WTM learning algorithm alters weights based on specialized feed-

back, amplifying weights for true positives and reducing for false

positives, reinforcing consistently accurate clauses.

These variants introduced serve to expand the applicability and

enhance the performance of TM. In the subsequent sections of this

paper, we will evaluate the effectiveness of regular TM and the

variants within our proposed AdaTM framework.

4 AdaTM
In this section, we formally introduce AdaTM , a TM crafted for

continual learning. AdaTM stands out for its innate capacity to

assimilate new tasks, preserve historical knowledge, and maintain

computational efficiency. Its architecture is underpinned by a com-

bination of mechanisms addressing class integration, knowledge

rejuvenation, and model scalability. We will explore these facets in

greater depth in the subsequent sections.

4.1 Problem Setup
Continual learning encompasses various approaches, with our fo-

cus on class-based continual learning. In this approach, each new

task T𝑖 introduces separate classes, aiming to integrate new knowl-

edge while preserving the understanding of previous classes from

tasks T1, . . . , T𝑖−1. Conventional neural networks, with their dense

connections and shared weight matrix𝑊 . risk blending class bound-

aries. Thus, when𝑊 is adjusted for a new class or task T𝑖 , informa-

tion on earlier classes might be lost, causing catastrophic forgetting.
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Figure 3: Illustration of AdaTM’s performance tracking and optimal state recording process between tasks T0 and T1. Depicts
key steps of training, calculating performance metrics, identifying optimal states, memory updates, and clause pruning.

Algorithm 1 AdaTM with Pruning for Continual Learning

1: procedure AdaptiveTsetlinContinual(T𝑖 , 𝑘, 𝛼, 𝛽, 𝑁 )

2: Initialize memory buffer B of size 𝑘

3: Initialize clause teams C
4: while new task T𝑖 arrives do
5: Create new clause teams C𝑛𝑒𝑤 for classes in T𝑖
6: Append C𝑛𝑒𝑤 to C
7: Interleave training data of T𝑖 with samples from B
8: for each epoch 𝑒 do
9: Train using Adaptive Tsetlin Machine on merged data

10: Calculate 𝑃 (𝑒 ) with Eq. 7

11: if 𝑃 (𝑒 ) is maximum so far then
12: 𝑆∗ = current state

13: end if
14: end for
15: Update B with samples from T𝑖 ensuring class balance
16: for each clause 𝑐 in C do
17: Calculate confidence score𝐶 using 𝜏 and 𝜃

18: end for
19: Sort clauses in C by confidence scores

20: Remove the bottom 𝑁 clauses from C
21: end while
22: end procedure

TMoffers an alternative. Instead of dense connections, it employs

clause teams, denoted as C = {𝑐1, 𝑐2, . . . , 𝑐𝑚}. ensuring dedicated

representations for each class. This structure better retains knowl-

edge. However, with TM’s dependency on reinforcement learning,

new data can influence TA states, potentially leading to a form of

forgetting. While TM reduces interference, it’s still vulnerable to

challenges in class-based continual learning. This highlights the

value of our AdaTM contribution.

4.2 Adaptive Tsetlin Machine
4.2.1 Adaptive Growth with Attention to Fading Knowledge. While

TM’s architecture naturally facilitates the integration of clause

teams for emergent classes, as shown in steps 5 to 7 inAlgorithm1,
safeguarding the efficacy of established clause teams, denoted as

C
old

⊆ C, remains a pivotal concern. In the absence of consistent

engagement with relevant samples, these mature clause teams are

susceptible to a gradual erosion in their representational accuracy.

To navigate this challenge, we introduce a memory buffer,B. The

size of the memory buffer, denoted as 𝑘 , is empirically determined

based on the training data size and the computational capacity

available. Its primary aim is to retain a subset of past tasks in a

way that offers a balanced representation of various classes. The

buffer contains binarized samples, specifically input-output pairs.

Formally, the buffer is represented as

B = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑘 , 𝑦𝑘 )} (5)

where each (𝑥𝑖 , 𝑦𝑖 ) corresponds to input-output pairs culled from

prior tasks. For a given class, there exists a corresponding subset

B𝑗 within B, delineated by the relationship:

B𝑗 = B ∩ (𝑋 𝑗 × 𝑌𝑗 ) (6)

where 𝑋 𝑗 and 𝑌𝑗 represent the input and output spaces of the

class, respectively. The input space 𝑋 𝑗 corresponds to the set of all

possible input data instances that can belong to the class 𝑗 , while

the output space 𝑌𝑗 signifies the possible output labels or responses

specific to that class.

As the model undergoes training, data from B are integratively

interleaved into the learning process. By periodically revisiting

instances from this buffer, the system not only rejuvenates older

clause teams but also consolidates pre-existing class delineations.

As tasks unfold, while the buffer undergoes iterative updates, it

remains anchored in its foundational principle of class-balanced

representation (step 15 inAlgorithm1). This multi-faceted strategy

empowers TM to adeptly navigate the continual learning landscape,

ensuring consistent performance even in the face of evolving data

streams.

4.2.2 Rigorous Performance Metrics for Stochastic Trajectories. TM,

by its very nature, is inherently susceptible to stochastic fluctu-

ations. This, coupled with its reinforcement attributes, makes its

trajectory during learning phases more intricate. To quantify its
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performance, we define 𝑃 after each epoch 𝑒 as:

𝑃 (𝑒) = 𝛼 ×𝐴𝐶𝐶avg + 𝛽 × (1 − 𝐹𝑀avg) (7)

where 𝐴𝐶𝐶avg represent the continual learning average accuracy

that has been defined in Eq. 11, 𝐹𝑀avg is the average forgetting

measure that has been defined in Eq. 12, 𝛼 and 𝛽 are weighting

coefficients that balance accuracy and retention, respectively.

For optimal continual learning, it becomes paramount to harness

the best learning state. As such, we identify and archive the state

𝑆∗ corresponding to the epoch exhibiting peak performance:

𝑆∗ = argmax

𝑒
𝑃 (𝑒) (8)

This state, a representation of the machine’s optimal configura-

tion at a given time, then serves as the foundational starting point

for initializing clause teams during the subsequent task training

phases, ensuring a harmonious blend of past insights with new-

found knowledge. To gain a comprehensive understanding of the

entire process as described, Fig. 3 depicts how the methodology

operates between learning in T0 and when T1 emerges.

4.3 Clause Pruning Mechanism: Addressing
Scalability Concerns

The AdaTM’s architectural propensity to organically expand in re-

sponse to emerging classes is both a strength and a potential source

of inefficiency. While this expansion provides a robust framework

for capturing new knowledge, it inadvertently leads to linear growth

in the model size, which can, over time, hinder computational per-

formance and real-time applicability. Particularly in scenarios in-

volving a multitude of classes, the proliferation of clause teams can

challenge the inherent efficiency for which TM is acclaimed.

To address this scalability challenge, we introduce a clause confi-

dence score-based pruning strategy, aimed at judiciously reducing

the incremental growth of clause teams without undermining the

representational capacity of the model.

4.3.1 Clause Confidence Formulation. The intrinsic reinforcement

learning paradigm of TM means that the states of TA inherently

reflect their confidence levels in including or excluding specific

input features. Let’s denote the state of a particular TA as 𝜏 , where

𝜏 ∈ 𝑆 and 𝑆 is the set of all possible states. The boundary between

the inclusion and exclusion states can be designated as 𝜃 . A clause’s

confidence score 𝐶score can be mathematically quantified by con-

sidering the aggregate deviation of its associated TA states from

this boundary 𝐵. Mathematically, for a clause with 𝑛 TAs:

𝐶score =
1

𝑛

𝑛∑︁
𝑖=1

|𝜏𝑖 − 𝜃 | (9)

A greater distance of 𝜏𝑖 from 𝜃 implies higher confidence in the de-

cision made by the respective TA, and consequently, the clause

to which it belongs. Thus, the clauses with the highest aggre-

gated scores, representing the most decisive patterns, are deemed

paramount. This represents a novel and computationally efficient

method for evaluating clause confidence, distinctively characteristic

of the TM domain.

4.3.2 Pruning Strategy. Guided by the confidence scores, our prun-
ing methodology can be succinctly captured as follows: At the

end of the training phase for each task, clauses with the lowest

confidence scores, which denote uncertainty or less importance

in their representational capacities, are pruned. Specifically, the

least 𝑁 clauses, as per their confidence scores, are removed, thereby

mitigating the overhead of unnecessary expansion.

P = Prune𝑁 (C,𝐶score) (10)

Where P denotes the set of pruned clauses and Prune𝑁 represents

the function that sorts and prunes the 𝑁 clauses with the lowest

confidence scores from the set of all clauses C. The equivalent

process visualization can be seen in Fig. 3 when a new task T∞
arrives.

This strategy strikes a balance. While the adaptive growth allows

for capturing novel class information, the pruning ensures the

model remains computationally efficient. By grounding our pruning

mechanism in the intrinsic properties of TA, we ensure that the

pruned elements are those that contribute the least to the model’s

efficacy, thus preserving the integrity and performance of TM across

tasks. To grasp the role and intricacies of the pruning mechanism

within our framework, we direct the reader to steps 16 to 20 in

Algorithm1.

5 EXPERIMENTAL SETUP
5.1 Datasets
Our selected datasets, displayed in Table 1, span a wide range of

applications, showcasingAdaTM’s versatility. Despite their limited

complexity, these foundational datasets are pivotal for on-device

implementations, particularly in the context of edge AI. The pri-

mary objective of using these datasets is to expediently iterate,

optimize, and validate, thereby ensuring the model’s efficiency and

the feasibility of the proposed techniques in real-world scenarios.

Highlighting our class-incremental learning, each dataset was

split into 𝑁 tasks, introducing 2 new classes per task. This is in line

with typical continual learning settings, like in split-MNIST, where

classes are added incrementally to mirror real-world situations[21,

27], testing the system’s adaptability and retention of prior knowl-

edge.

Dataset Summary
MNIST: A dataset of handwritten digits with 10 classes. It has 60,000

training and 10,000 test samples, used for 5 tasks with 2 classes per task.

FashionMNIST:A dataset of clothing items with 10 classes. It has 60,000

training and 10,000 test samples, used for 5 tasks with 2 classes per task.

AudioMNIST: A dataset for audio recognition with 10 classes. It has

27,000 training and 3,000 test samples, used for 5 tasks with 2 classes

per task.

TESS: A dataset for audio emotion recognition with 6 classes. It has

2,240 training and 560 test samples for 3 tasks with 2 classes per task.

PAMAP2: A dataset of human physical activity with 12 classes. We

randomly selected 96,000 training and 24,000 test feature sets for 6 tasks

with 2 classes per task.

Table 1: Summary of datasets used in the study.
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Models Type Structure Hyper-parameters
MLP Full-precision

model

2 Linear layers (256 neurons, ReLU) + Linear(256, num classes) Learning rate: 0.01; Batch size:

500; Optimizer: SGD

LeNet5 Full-precision

model

3 Conv layers (6, 16, 120 channels; 5x5 kernel, Tanh, BatchNorm) + 2 AdaptiveAvg-

Pool (14x14, 5x5) + Linear(120, 84) + Tanh + Linear(84, num classes)

Learning rate: 0.1; Batch size:

500; Optimizer: SGD

ResNet18 Full-precision

model

ResNet(4 layers, 2 BasicBlocks each) + Linear(2560, num classes) Learning rate: 0.1; Batch size:

500; Optimizer: SGD

B-MLP Binary model 2 Binarized Linear layers (256 neurons, HardTanh) + Binarized Linear(256, num

classes)

Learning rate: 0.01; Batch size:

500; Optimizer: SGD

B-LeNet5 Binary model 3 Binarized Conv layers (6, 16, 120 channels; 5x5 kernel, HardTanh, BatchNorm) + 2

AdaptiveAvgPool (14x14, 5x5) + Binarized Linear(120, 84) + HardTanh + Binarized

Linear(84, num classes)

Learning rate: 0.1; Batch size:

500; Optimizer: SGD

B-

ResNet18

Binary model ResNet(4 layers, 2 BasicBlocks eachwith Binarized Conv andHardTanh) + Binarized

Linear(2560, num classes)

Learning rate: 0.1; Batch size:

500; Optimizer: SGD

TM Non-weighted TM 1000 clauses per class, 8 TA states T: 30; s: 15

CTM Non-weighted

CTM

1000 clauses per class, 8 TA states, (10, 10) patch size for MNIST and FashionMNIST,

(10, 13) patch size for AudioMNIST and TESS

T: 30; s: 15

WTM Weighted TM 500 clauses per class, 8 TA states T: 100; s: 5

WCTM Weighted CTM 500 clauses per class, 8 TA states, (10, 10) patch size for MNIST and FashionMNIST,

(10, 13) patch size for AudioMNIST and TESS

T: 100; s: 5

Table 2: Specifications and hyperparameter settings for the various models compared in the study, categorized by model type
and structure. Provides comprehensive details to understand the model configurations used for performance benchmarking.

5.2 Baselines and Models
To assess AdaTM’s efficiency, the benchmarks selected range from

classic but effective EWC to state-of-the-art GDumb. The baseline

models and their respective settings are as follows: EWCwith 𝜆 = 1;

LwF with 𝜙 = [0, 0.5, 1.333, 2.25, 3.2] and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 2; SI with

𝜆 = 1 and 𝜖 = 0.1; DGR, ER, and iCaRL, each with a memory

buffer of 1000 samples; and GDumb with a memory buffer of 4400

samples. AdaTM also had a 1000-sample buffer. In this context,

"memory" denotes the buffer size or replay sample count used by

models. Specifically for the TESS dataset, due to its limited size, the

memory buffer for all strategies was adjusted to 100. For reference,

the approximate buffer sizes for the datasets used were: MNIST and

FashionMNIST at 3.14 MB each, AudioMNIST at 1.51 MB, TESS at

0.47 MB, and PAMAP2 at 0.20 MB.

When determining the neural network architectures for our

evaluations, we were guided by a series of deliberate decisions,

with an emphasis on efficiency for edge computing applications:

(1) Multilayer Perceptron (MLP): This basic feedforward
setup provides a foundational benchmark.

(2) LeNet5: Included as a standard CNN, it facilitates compari-

son with AdaTM.

(3) ReducedResNet18: A streamlined ResNet18 caters tomod-

ern, deeper designs while fitting on-device learning, bal-

ancing complexity with efficiency for constrained settings.

To ensure a fair comparison in terms of efficiency, we tested both

full-precision and binary versions of these networks with concise

architectures or simplified versions appropriate for edge computing.

For TM models, both regular and convolutional types were eval-

uated, including weighted variants. Network and hyper-parameter

specifics are in Table 2. All experiments were repeated five times.

5.3 Evalutation Metrics
To systematically assess the AdaTM in continual learning scenarios,

we employ a set of metrics, each expressed with their respective

symbols:

5.3.1 Average Accuracy (𝐴𝐶𝐶avg).

Accavg =

∑𝑁
𝑖=1 Accovr,𝑖

𝑁
(11)

Where 𝑁 is the total number of tasks, and Accovr,𝑖 is task-wise

overall accuracy that averages performance up to the 𝑖th task. This

metric encapsulates the model’s consistent performance over all

tasks.

5.3.2 Forgetting Measure (FM). Given the 𝑛𝑡ℎ task:

FM𝑛 =
Accprev,𝑛 − Accovr,𝑛−1

Accprev,𝑛

Where Accprev,𝑛 is the task-wise previous accuracy that measures

the knowledge retention after introducing the 𝑛𝑡ℎ . Then averaging

across all tasks:

FMavg =

∑𝑁
𝑖=2 FM𝑖

𝑁 − 1

(12)

This metric discerns the model’s performance decrement as new

tasks emerge, providing a lens into its cross-task retention capabili-

ties.

5.3.3 Processing Latency (L). Captures the entire time taken across

all tasks, including training and validation phases. It’s a testament

to the model’s processing efficiency.

5.3.4 Maximum RunMemory (M). A direct measure signifying the

peak memory consumption, spotlighting the model’s deployability

in resource-tight settings.
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5.3.5 Energy Consumption. This metric quantifies the energy con-

sumed by the model on a Raspberry Pi, vital for understanding

energy efficiency in on-device AI deployments. We integrated the

power (measuredwith a current and voltagemeter) over themodel’s

runtime to determine the total energy, denoted as E, spanning all
tasks. We also noted the peak power P

peak
to gauge maximum

power demand, offering a thorough energy profile of the model on

the device.

5.4 Hardware Specifications
We ran experiments on two computational environments, both us-

ing the CPU for training, to verify its adaptability across platforms.

The first was a laptop with a 13th Gen Intel Core i7-13850HX, hav-

ing 20 cores (8 performance, 12 efficient) and a peak frequency of

5.30 GHz. The second was a Raspberry Pi Model 4B, featuring a

Broadcom BCM2711 Quad-core Cortex-A72 SoC at 1.5 GHz and 8GB

LPDDR4-3200 SDRAM. We used PyTorch, with memory tracked by

Memory Profiler.

6 RESULTS AND DISCUSSION
In this section, we explore the empirical performance of AdaTM
against traditional neural network continual learning methods. By

testing across varied benchmarks and environments, we under-

line the distinct benefits of AdaTM and its promise as a strong

alternative to current strategies.

6.1 Average Accuracy and Forgetting Measure
6.1.1 AdaTM’s Dominance in Comparative Performance. In our sys-

tematic evaluation across datasets, as showcased in Table 3,AdaTM
consistently exhibited remarkable performance. For the MNIST and

FashionMNIST datasets, AdaTM displayed dominance, achieving

an accuracy of 97.29% and 82.67%respectively, thereby outperform-

ing both ER and GDumb. Notably, while AdaTM took the lead in

accuracy, GDumb showcased slightly better 𝐹𝑀avg in the Fashion-

MNIST context. In datasets like AudioMNIST and TESS, AdaTM’s

performance persisted impressively. While GDumb achieved the

highest accuracy in AudioMNIST, AdaTM wasn’t far behind, and

indeed, outperformed ER. However, the advancement of GDumb in

both FashionMNIST and AudioMNIST can be attributed to its use of

ResNet, which is resource-intensive compared to TM-based models.

Next, the TESS dataset further illuminated AdaTM’s prowess, with

an accuracy of 96.26%, surpassing Replay and iCaRL. Finally, for

the PAMAP2 dataset, AdaTM maintained its robust performance

with an accuracy of74.80% and low forgetting measures. iCaRL ob-

tained the best results in the forgetting measures but at the expense

of far reduced accuracy. Note that in our experiments, without

the continual learning capability of AdaTM , all TM models exhib-

ited a pronounced disparity between their performance on current

and prior tasks. While the models consistently achieved over 95%
accuracy on current tasks, their recall of prior tasks was notably

compromised, with accuracies ranging from 0.4% to 9%.

6.1.2 Insights into Disparate Strategy Performances. Delving deeper
into the comparative analysis, EWC and DGR notably lagged be-

hind. Here, due to its regularization-based nature and similar re-

sults, only EWC is listed as a representative in the table, while LwF

and SI are omitted. These strategies’ performance across datasets

such as MNIST, FashionMNIST, and AudioMNIST were particularly

concerning, often hovering around or below the 50% mark. In par-

ticular, we found EWC, LwF, and SI to be ill-equipped to handle

class-incremental learning scenarios in our experiments. These

methods rely on imposing penalties to prevent significant changes

to previously learned weights. However, in a dynamic learning

landscape with continually added classes, these penalties might

be too restrictive, thereby hindering the model’s capacity to learn

new information without drastic loss of old knowledge. DGR while

conceptually promising, exhibited inconsistency in its results. The

performance of DGR is closely tied to the quality of the generated

samples. Given a constrained training budget, the generator may

not produce high-fidelity samples, thus affecting the performance

of the classifier trained on them.

6.1.3 Delving into the AdaTM Framework. Furthermore, within the

AdaTM framework, different variants show strong performance

across datasets. However, their distinct configurations and inherent

characteristics can lead to varied efficiencies. Specifically, the CTM,

due to its more complex structure, may require increased processing

time. On the other hand, weighted models like WTM and WCTM

might achieve good results with fewer clauses, suggesting a more

streamlined efficiency. Additionally, when introducing the pruning

mechanism paired with WTM, it shows marginal performance

differences across datasets compared to non-pruned cases. As we

delve into these models, it becomes evident that a balance between

performance and efficiency is a recurring theme within the AdaTM
framework. This is worth further discussion in Section 6.2.

6.1.4 Interesting Findings and Considerations. An intriguing ob-

servation is the presence of negative forgetting measures in some

models, including, notably, iCaRL on the TESS dataset and TMs

on PAMAP2. A negative forgetting measure implies that a model’s

performance on previous tasks improves as it learns new tasks.

This phenomenon, while counterintuitive, could be attributed to

fluctuations during learning different tasks. A more in-depth ex-

ploration of this occurrence can be found in Section 6.3. Another

interesting observation is that iCaRL, despite its prominence in the

literature, did not consistently outperform our evaluations. This

inconsistency might stem from the neural network’s simplicity

used in the experiments. Given iCaRL’s template-based methodol-

ogy, the exemplar features’ quality becomes paramount. Simplistic

networks might not capture adequate latent information, leading

to suboptimal classification performance.

Aggregating these findings, several observations can be drawn.

Primarily, AdaTM exhibits consistently high performance in terms

of accuracy across datasets. ER and GDumb, while competitive, gen-

erally follow AdaTM’s lead. In terms of forgetting measures, there

is variability across datasets, but AdaTM consistently ranks among

the top models, indicating its robustness in retaining previously

learned information. Lastly, we can also observe that the pruning

mechanism works well although there might be slight performance

deterioration for some benchmarks.
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MNIST FashionMNIST AudioMNIST TESS PAMAP2
Strategies Models

𝐴𝐶𝐶avg 𝐹𝑀avg 𝐴𝐶𝐶avg 𝐹𝑀avg 𝐴𝐶𝐶avg 𝐹𝑀avg 𝐴𝐶𝐶avg 𝐹𝑀avg 𝐴𝐶𝐶avg 𝐹𝑀avg

MLP 19.43% 99.82% 19.93% 100.00% 20.10% 99.08% 25.00% 94.44% 13.07% 88.25%

LeNet 22.77% 83.51% 21.89% 96.47% 21.33% 86.65% 55.31% 75.73% - -

ResNet 19.72% 100.00% 19.96% 100.00% 19.88% 100.00% 48.85% 100.00% - -

B-MLP 21.94% 84.81% 23.22% 93.29% 26.30% 78.41% 52.17% 73.84% 14.70% 81.64%

B-LeNet 19.79% 95.59% 19.30% 99.87% 19.57% 99.22% 48.83% 92.46% - -

EWC

B-ResNet 16.92% 100.00% 18.46% 100.00% 24.93% 91.44% 38.67% 95.91% - -

MLP 85.97% 2.72% 72.12% 7.55% 77.07% 7.12% 57.26% 19.66% 43.42% 14.47%

LeNet 85.52% 2.32% 71.30% 7.16% 87.42% 2.98% 56.43% 21.01% - -

ResNet 93.92% 1.19% 78.79% 5.50% 96.25% 0.71% 26.56% 50.00% - -

B-MLP 73.73% 4.18% 65.50% 9.10% 55.69% 10.25% 38.38% 25.69% 23.60% 16.97%

B-LeNet 78.32% 5.01% 51.58% 15.25% 61.32% 8.66% 54.56% 25.53% - -

GDumb

B-ResNet 14.51% -0.46% 25.99% 26.28% 66.45% 6.48% 43.36% 22.31% - -

MLP 53.61% 26.71% 47.46% 43.95% 24.95% 84.40% 35.48% 100.00% 23.18% 67.43%

LeNet 36.99% 32.94% 20.09% 96.94% 29.10% 72.86% 34.65% 100.00% - -

ResNet 31.00% 42.17% 19.81% 100.00% 19.78% 100.00% 24.90% 100.00% - -

B-MLP 54.71% 12.38% 36.21% 51.87% 32.65% 66.08% 20.12% 100.00% 19.26% 51.07%

B-LeNet 50.99% 24.49% 44.74% 31.71% 34.05% 57.00% 30.91% 100.00% - -

DGR

B-ResNet 23.15% 57.28% 10.00% 85.16% 23.88% 85.50% 28.42% 100.00% - -

MLP 90.57% 3.05% 80.55% 8.38% 71.14% 10.80% 50.21% 48.25% 38.96% 18.00%

LeNet 96.24% 1.07% 81.80% 8.05% 93.39% 1.62% 82.57% 20.01% - -

ResNet 95.92% 1.62% 79.03% 11.96% 93.55% 2.02% 37.76% 65.85% - -

B-MLP 83.98% 6.25% 73.49% 13.40% 74.03% 6.26% 70.33% 27.27% 27.65% 27.34%

B-LeNet 89.59% 2.93% 66.65% 9.88% 74.75% 4.83% 72.61% 21.25% - -

ER

B-ResNet 83.25% 3.14% 72.44% 11.99% 89.37% 3.26% 54.15% 38.53% - -

MLP 80.88% 2.62% 70.20% 7.44% 73.11% 5.90% 62.04% 18.41% 49.39% 2.94%
LeNet 76.11% 1.91% 64.63% 7.78% 67.03% 8.63% 65.43% 6.16% - -

ResNet 83.04% 1.44% 72.37% 7.25% 90.97% 2.34% 82.81% -7.50% - -

B-MLP 78.84% 1.96% 66.98% 13.06% 68.71% 8.23% 79.51% 4.65% 30.82% 9.41%
B-LeNet 46.96% 13.94% 44.94% 24.06% 41.04% 15.66% 53.92% 31.08% - -

iCaRL

B-ResNet 38.26% 10.23% 40.57% 15.69% - - - - - -

TM 93.88% 2.59% 80.55% 12.54% 90.45% 3.56% 93.36% 7.43% 70.82% 15.64%
CTM 97.03% 1.25% 82.67% 8.16% 89.15% 4.08% 88.80% 10.88% - -

WTM 93.87% 2.35% 80.79% 10.08% 91.21% 2.91% 96.26% 3.62% 74.80% -3.00%
AdaTM WCTM 97.29% 1.04% 82.33% 9.35% 88.92% 3.52% 91.29% 8.53% - -

AdaTM+Prune WTM 92.54% 2.88% 80.53% 11.28% 90.99% 2.82% 98.55% 0.49% 73.02% -8.66%
Table 3: Comparative performance metrics of AdaTM and other models on diverse datasets. Highlights AdaTM’s efficacy for
continual learning across different benchmarks compared to SOTA techniques.

6.2 Efficiency Analysis
We will now discuss the resource and energy-related measures for

various continual learning approaches, especially for those that

showed the best performance.

6.2.1 Run Time Memory. In evaluating memory consumption met-

rics, AdaTM and AdaTM+Prune consistently demonstrate effi-

ciency, as shown in the bottom plot in Fig. 4. For instance, on

the MNIST, both strategies consume less memory than GDumb’s

ResNet, the most memory-intensive method, with AdaTM sav-

ing approximately 31x and AdaTM+Prune saving about 35x in

comparison. They also significantly outperform ER’s LeNet. On

FashionMNIST, the trend persists as AdaTM and AdaTM+Prune
require significantly less run memory than GDumb with ResNet,

the peak consumer. Similarly, AdaTM and AdaTM with prun-

ing maintain a lean profile on PAMAP2, using about 26x and 13x
less run memory, respectively compared to iCaRL with MLP. Such

comparisons further underscore AdaTM and AdaTM+Prune’s
efficiency, positioning them as preferable choices against a range

of other strategies. In fact, memory constraints are a primary fac-

tor in determining if a particular machine learning design can be

practically realized on an edge device or not. AdaTM’s compact

memory profile enables continual learning in such constrained en-

vironments, positioning it as a standout choice for devices where

memory resources are limited.

6.2.2 Latency. Processing latency varies across models and strate-

gies. Our analysis discerns between latency-focused strategies and

those balancing latency with accuracy. It is worth mentioning that

results for EWC, LwF, SI, and DGR are omitted due to their consis-

tently poor accuracy and forgetting measures across datasets.

The top plot of Fig. 4, AdaTM showcases latency measured on

the laptop. On the MNIST dataset, AdaTM surpasses iCaRL and ER

by factors of 23 and 4.5, respectively. The AdaTM+Prune strategy
accentuates this efficiency. For example, on FashionMNIST, pruned

AdaTM outstrips GDumb’s ResNet, enhancing AdaTM’s perfor-

mance by (52.37%). This trend is evident in AudioMNIST, where

AdaTM+Prune improves latency over AdaTM by (23.02%). On
TESS and PAMAP2, although AdaTM and AdaTM+Prune may

not achieve the least latencies, they excel in accuracy (35%/27%)
improvement over GDumb for TESS/PAMAP2). Notably, their in-

creased latency on PAMAP2 arises as TM processes samples sequen-

tially, unlike batch processing in deep neural networks, prompting

potential optimization in future versions of our work on Tsetlin

Machines.
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Figure 4: Comparative Analysis of Processing Latency and Maximum Run Memory across Different Models and Strategies.

Transitioning from the laptop to a more resource-constrained

platform, our investigations extended to the Raspberry Pi. The

latency trends were consistent. Specifically, AdaTM on the Rasp-

berry Pi demonstrated a latency advantage of 1.8x over the iCaRL

paired with LeNet for MNIST. Furthermore, when implementing

the AdaTM+Prune strategy, latency is reduced by a striking 2.7x
compared to its non-pruned counterpart. To put it in perspective,

this pruned variant was faster by approximately 5x and 7.7x than

the LeNet-based iCaRL and ER methods on the MNIST, respectively.

Also, it was faster by about 1.2x than both iCaRL and ER paired

with LeNet on the TESS.

Conclusively, regardless of the platform, the results underscore

AdaTM’s compelling balance of latency and accuracy. Particularly,

AdaTM+Prune emerges as a robust strategy, delivering enhanced

latency and maintaining premier accuracy, setting it apart from

competing methodologies.

MNIST TESS
Model Strategy P

peal
(Watt/s) E (J) P

peal
(Watt/s) E (J)

ER 5.94 18790.45 5.62 798.59

GDumb 5.99 3844.54 5.87 673.44LeNet

iCaRL 6.17 12784.28 5.92 832.48

ER 4.38 7644.01 5.79 551.68
GDumb 4.12 1403.37 5.65 524.44MLP

iCaRL 4.38 5029.03 5.70 555.06

AdaTM 5.31 7075.95 5.64 801.26
WTM

AdaTM+Prune 5.72 2717.27 5.55 549.71
Table 4: On-device performance metrics of AdaTM on Rasp-
berry Pi across key metrics.

6.2.3 On-Device Energy Consumption. The energy metrics pre-

sented in Table 4 illuminate the energy efficiency of different model-

strategy pairings on a Raspberry Pi deployment.We selectedMNIST,

a complex dataset, and TESS, a simpler one, to span the range of

dataset intricacies. PAMAP2 was excluded due to AdaTM’s pro-

nounced performance edge. For FashionMNIST and AudioMNIST,

the intrinsically high energy demands of LeNet and ResNet, evident

in their latency and memory metrics, rendered their inclusion less

pertinent. As a crucial benchmark, the AdaTM strategy paired

with the WTM model requires a peak power of (5.31)Watt/s for

MNIST, and (5.64)Watt/s for TESS, with total energy consumptions

of (7075.95) Joules and (801.26) Joules, respectively. It can be seen

that the latency result is more pronounced on devices with limited

computational abilities compared to the previous laptop platform,

highlighting this common real-world challenge.

On inspecting the MLP model combined with the GDumb strat-

egy, it manifests the lowest energy consumption of (1403.37) Joules,
its peak power ascends to (4.12) Watt/s for the MNIST dataset. For

TESS, this pairing consumes (524.44) Joules, with a peak power

of (5.65) Watt/s. Although MLP models can be energy-efficient,

their accuracy is often compromised for more intricate tasks. Con-

sequently, the elevated energy consumption of the AdaTM frame-

work might be rationalized by its enhanced performance and accu-

racy. Conversely, the LeNet model, a standard CNN paired with the

iCaRL strategy, expends 12784.28 Joules for MNIST, and 832.48
Joules for TESS, marking an approximate 1.8x increment over the

AdaTM andWTM pairing on MNIST. This finding implies that even

foundational CNNs like LeNet can surpass a TM model in terms of

energy demand and latency. Given this juxtaposition, it is plausible

to infer that more elaborate architectures, such as ResNet, would

be even more energy-hungry and time-consuming, accentuating

the energy-saving merits of TM models in on-device contexts.

Moreover, incorporating pruning into the AdaTM strategy com-

bined with the WTM model engenders a marked decline in en-

ergy expenditure. The AdaTM+Prune pairing demands merely

(2717.27) Joules for MNIST, and (549.71) Joules for TESS, approxi-
mately 2.6x and 1.5 less energy than the non-pruned AdaTM . This
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underscores the pruning techniques’ promise in augmenting the en-

ergy efficiency of sophisticated models, a vital factor for on-device

implementations.

6.3 Evaluation of Pruning Mechanism

Figure 5: Task-wise comparative analysis of AdaTM pruning
mechanisms on key performance metrics.

To evaluate AdaTM’s pruning mechanism, we performed an

ablation study on MNIST, AudioMNIST, and PAMAP2 datasets,

highlighting its adaptability across different modalities and en-

suring focused analysis. Our goal was to discern the strengths of

AdaTM’s pruning from various angles. Experimentally: The base

AdaTM uses WTM with 500 clauses per class; AdaTM+Prune
starts with 500 clauses per class, pruning to 200 after each task;

AdaTM+Random Prune mimics AdaTM+Prune but uses random

instead of deterministic pruning; AdaTM+Reduced Clause begins

with 200 clauses per class, with no expansion or pruning. Task-

specific and aggregate performances are detailed in Fig. 5.

6.3.1 Effectiveness and Efficiency: AdaTM+Prune vs. AdaTM. To
evaluate the impact of the pruningmechanism,we comparedAdaTM

with pruning to the standard AdaTM . Across the datasets, AdaTM
generally achieved slightly higher accuracy than AdaTM+Prune
91.21% vs. 90.99% for AudioMNIST, 93.87% vs. 92.54% for MNIST,

and 74.80% vs. 73.02% for PAMAP2. AdaTM also marginally out-

performed AdaTM+Prune in knowledge retention on the MNIST

dataset. However, when it comes to processing speed, AdaTM+Prune

excelled: 29.1 seconds vs. 35.8 seconds for AudioMNIST, 46.6 sec-

onds vs. 68.0 seconds for MNIST, and a notable 192.7 seconds vs.

333.5 seconds for PAMAP2. In terms of memory usage, results were

mixed. For AudioMNIST, AdaTM consumed 63.1 MB compared

to AdaTM+Prune’s 68.5MB, and for PAMAP2, AdaTM was more

efficient with 2.01 MB against AdaTM+Prune’s 4.1 MB. This sug-

gests that TM’s training memory efficiency might be influenced

more by input feature size.

In summary, while the pruning mechanism might marginally

affect accuracy in certain cases, it significantly boosts processing

efficiency, emphasizing its potential in real-time or edge-computing

scenarios.

6.3.2 Deterministic Prune vs. Random Prune. To gauge the effec-

tiveness of our pruning approach, we compared AdaTM+Prune

with AdaTM+Random Prune, aiming to highlight the benefits of

deterministic pruning over stochastic methods.

Deterministically, AdaTM with pruning consistently outper-

forms AdaTM with the random Pruning method in learning per-

formance. For example, on MNIST, AdaTM+Prune achieved 92.54%
accuracy, while the stochastic method reached 91.54%. The for-

getting measure, crucial in continual learning, further emphasized

AdaTM+Prune’s edge, with lower values across datasets indicating
better stability. Interestingly, both models showed negative forget-

ting on the PAMAP2 dataset, possibly from enhanced intermediary

task performance. Yet, AdaTM+Prune’s measure of -8.66% was

less negative than AdaTM+Random Prune’s -13.91%, suggesting
better knowledge retention. Efficiency-wise, textbfAdaTM+Prune
had slightly higher latencies and memory usage, but these differ-

ences were minimal. This indicates that the deterministic pruning’s

gains in accuracy and stability aren’t at a significant computational

expense. Overall, our results bolster the efficacy of the proposed

pruning method, blending top-notch performance with reasonable

efficiency metrics.

6.3.3 Fine-tuning After Prune vs. Direct Reduced Clauses. Com-

paring AdaTM+Prune and AdaTM+Reduced Clause, the dynamic

adaptation of the former offers clear performance advantages. Across

all datasets,AdaTM+Prune consistently surpasses AdaTM+Reduced

Clause in average accuracy. For example, onMNIST,AdaTM+Prune
achieves 92.54% accuracy, contrastingwithAdaTM+Reduced Clause

90.46%. This superior performance is reflected in the forgetting

measure, with AdaTM+Prune demonstrating greater stability, ev-

ident from its lower forgetting rates in AudioMNIST and MNIST.

Though AdaTM+Reduced Clause marginally outperforms in com-

putational efficiency, such as a latency of 192.7s versus 188.7s on
PAMAP2, and 38.1MB memory use against AdaTM+Prune’s 42.5
MB on MNIST, these gains don’t offset the accuracy loss.

The data suggests starting with a wider clause set, then prun-

ing and fine-tuning is more effective. This approach, being more

selective, hastens convergence to better outcomes. It emphasizes

the value of an initial expansion followed by systematic reduction

and calibration over starting with a limited clause set.

In the end, we can analyse the task-wise performance for all four

configurations. As we can observe from line trends, AdaTM usu-

ally starts strong and often retains top performance. However,

AdaTM+Prune closely follows, indicating the effectiveness of the
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pruning method. In most tasks, AdaTM+Random Prune and AdaTM

+Reduced Clause fall behind the other two methods, reinforcing

the superiority of the developed pruning technique over random

pruning or starting with fewer clauses.

7 CONCLUSION
Our research highlights the promising capabilities of the proposed

AdaTM framework. A key attribute of the AdaTM is we are the

first to enable this logic-based learning model the dynamic architec-

tural adaptability, designed to integrate new learning tasks without

the need for the resource-intensive recalibrations found in standard

neural networks. Other contributions include the integration of a

unique pruning mechanism and empirical evidence supporting its

robust performance. Our comprehensive assessments show that

the AdaTM not only matches but often surpasses the performance

benchmarks of existing neural network models, covering crucial

metrics such as average accuracy, forgetting measure, processing la-

tency, and runtime memory. While popular datasets like CIFAR-10

serve as standard benchmarks, the real significance of our research

transcends specific datasets. It’s about shaping a more efficient and

scalable framework for continual learning in diverse, real-world

scenarios. Note that making the Tsetlin Machine work for more

complex datasets such as CIFAR-10 and CIFAR-100 is an active

area of research which will require fundamental changes to the

architecture and modelling processes of TM. This is an orthogonal

area of research which we would like to do in the future, further

paving the way for a sustainable continual learning paradigm.

Looking ahead, we recognize the need to refine the Tsetlin Ma-

chine’s training approach to reduce latency on the PAMAP2 dataset.

Implementing batch processing is on our near-future roadmap to

enhance latency while maintaining the advantages of AdaTM .

Additionally, we plan to explore adaptive pruning mechanisms,

understand interactions between continual learning tasks, and pos-

sibly integrate neural-symbolic approaches with AdaTM . As AI

and continual learning evolve, systems like AdaTM are set to play

a crucial role in establishing performance standards in edge com-

puting.
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