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ABSTRACT
Commercial building faults account for 0.3-1.8 quadrillion BTU of
primary energy annually in the US. Effective fault detection and
diagnosis (FDD) methods rely heavily on sensors as the primary
source of data. However, sensor faults, which occur when sensors
cease to function or produce erroneous readings, can lead to energy
inefficiency and user discomfort. Thus, ensuring sensor reliability is
crucial for maintaining energy efficiency and occupant comfort. In
this paper, we introduce FADED, a Fault Detection and Diagnostic
System for HVAC Sensors in Commercial Buildings. FADED differs
from traditional FDD methods by deploying an ephemeral and par-
allel infrastructure to provide additional data points for detecting
and identifying sensor faults at the Variable Air Volume (VAV) zone
level. When the Facilities department receives complaints, tech-
nicians use a smartphone application integrated with airflow and
temperature sensors to collect data through a simple walk-through.
The collected data, combined with Building Monitoring System
(BMS) readings, are analyzed using machine learning algorithms
to identify and diagnose temperature and airflow sensor faults in
VAV units. The system enhances sensor reliability by accurately
classifying and quantifying faults, aiding technicians, conserving
energy, and ensuring comfort. FADED utilizes real building data
and achieves classification accuracies of 99.57% for zone tempera-
ture, 98.67% for supply temperature, and 99.01% for airflow faults,
with minimal false alarms. It can also correct common sensor faults
in real-time with low mean absolute error, paving the way for
self-healing buildings. The proposed system was tested in a Uni-
versity building, successfully classifying operational sensors and
identifying sensor faults in rooms with poor ventilation and high
temperatures, demonstrating its practical utility.

CCS CONCEPTS
• Computer systems organization→ Sensors and actuators;
Redundancy; • Computing methodologies→ Supervised learn-
ing; • Networks→ Network reliability.
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1 INTRODUCTION
The building sector accounts for more than 40% of primary energy
consumption in the US, with about 50% of this energy used by heat-
ing, ventilation, and air conditioning (HVAC) systems [11]. HVAC
systems ensure comfortable environments in commercial build-
ings by maintaining desired temperature levels through a network
of sensors, actuators, and feedback controllers. Accurate sensor
readings are essential for monitoring HVAC health and identifying

potential issues. However, mass-produced and inexpensive sensors
may fail to provide reliable information.

In this paper, we define a sensor fault as a situation where a sen-
sor either stops functioning or generates inaccurate readings, such
as random noise, bias, or drift caused by prolonged operation and
challenging environments [24]. Sensor failures due to aging, flaws,
or environmental factors hinder effective HVAC control, leading
to increased energy consumption [42]. Commercial building faults
account for 0.3-1.8 quadrillion BTU of primary energy annually
in the US [37]. Effective fault detection and diagnosis (FDD) relies
heavily on sensor reliability, which is crucial for conserving energy
and improving occupant comfort in buildings. Consequently, there
has been significant research interest in sensor fault detection and
diagnosis for HVAC systems in recent years [18].

Currently, sensor faults are addressed by technicians manually.
They analyze sensor data from a Building Management System
(BMS). They may use additional reference sensors or diagnostic
tools to inspect the HVAC system. The inspection, diagnostic, and
calibration processes may take a few hours to a full day or longer.
Generally, it depends on the competency of the technician and
an insufficiently trained workforce impedes energy efficiency in
buildings [10]. Particularly, inadequate skills and knowledge can
lead to poor decision-making and misinterpretation of system con-
ditions, resulting in recurrent failures and additional repair work,
ultimately leading to higher costs [39]. Additionally, these labor-
intensive methods can disrupt the work environment and prolong
the procedure, potentially compromising occupant comfort [4].

This paper aims to develop a fault detection, diagnosis, (FDD)
and reconstruction system for the Variable Air Volume (VAV) main
sensors for each zone in a building that are used by the BMS to per-
form HVAC control, i.e. supply and zone temperature and airflow
sensors using real data traces. The goal is to facilitate the main-
tenance crew’s job when debugging zone issues with BMS faulty
sensors. While the majority of FDD systems are based on analyzing
BMS data, we propose to take a radically different approach by
deploying an ephemeral parallel sensing infrastructure. The idea is
not simply to compare sensor values between the BMS and FADED
directly, but rather to test each zone, in a short time, and com-
pare the two sensing data streams under dynamic conditions using
data-driven techniques to detect and classify sensor faults.

To test the effectiveness of FADED, we introduce five different
sensor faults of various severity in real production building sensor
streams and test different multi-class machine learning classifica-
tion models using real data from the BMS. Perhaps more impor-
tantly, once a fault is classified, we present a way to estimate the
parameters of the sensor’s error model. This enables us to have a
full functional description of the fault, allowing us to reverse the
process and estimate with high accuracy the correct sensor value as



Altynay Smagulova and Alberto E. Cerpa

if the sensor was not faulty. The implications of this are significant,
as it can open new avenues of research on “self-healing” buildings,
systems that can adapt to faulty components similarly to biological
systems in nature. The utilization of fault parameterization is a
commonly employed practice within the field of structural health
monitoring [22]. By using real data from production buildings, we
show that FADED is a state-of-the-art framework for sensor fault
detection, diagnosis, and quantification that enables HVAC techni-
cians to identify sensor faults, thereby optimizing energy usage in
buildings and enhancing occupant comfort quality.
We would like to highlight the contributions of the paper:

1. We propose FADED, a novel fault detection, diagnosis, and
quantification system that creates an ephemeral parallel sensing
infrastructure in each zone to identify faults. FADED enables techni-
cians to effortlessly gather sensor data during the investigation of a
malfunctioning zone through a mobile application, streamlining the
process, while also automating the analysis and decision-making
procedures. No study, to our knowledge, has developed a similar
end-to-end fault detection, diagnosis, and quantification system.

2. We use ML models for back-end fault detection, using a multi-
class Light Gradient BoostingMachine (LGBM)model. The classifier
is pre-trained using known sensor fault models and real data from
buildings. It can detect common sensor fault types such as bias,
drift, precision degradation, gain, and complete failure.

3. We show that FADED can estimate the parameter of the fault
for the reconstruction and eventual fault correction in software. The
findings from this study might be crucial for the development of
“self-healing” buildings, where the sensor readings can be corrected
in the BMS without the need to replace faulty sensors.

4. We test FADED by doing real-time experiments in a large
production University building using commercial sensors and a
real BMS system, verifying the operation of normal and faulty
sensors and reporting the faults found in many misbehaving zones
to the University facilities’ crew.

2 RELATEDWORK
In this section, we discuss some work done in FDD for HVAC
systems. FDD locates the causes of operational failures as well as
diagnoses such faults [8]. Condition-based, behavior-based, and
outcome-based faults are the three types of faults defined in FDD.
In our work, we emphasize the latter fault, which occurs when a
measured outcome differs from a reference outcome [8]. Kim et
al. [21] prioritize sensor faults as a top concern due to their signifi-
cant energy impact and highlight the limited literature addressing
them despite this emphasis. In this paper, we will discuss related
works that use a data-driven approach to address sensor FDD [16].

Liu et al. [25] use the one-dimensional convolutional neural net-
work (1-D CNN) and WaveCluster clustering analysis to extract
features from raw data and analyze the extracted features respec-
tively to identify temperature and water flow bias faults in Air Han-
dling Unit (AHU) using simulated data. However, authors report
that the WaveCluster clustering algorithm’s limitations include its
reliance on hyperparameters like grid density and outlier threshold,
which can lead to suboptimal settings and inaccurate FDD results.
On the contrary, FADED requires minimal hyperparameter tuning,
enhancing its implementation efficiency and generalizability.

Ng et al. [32] uses the Bayesian method to detect bias faults in
water flow and temperature sensors in a central chiller plant. The
proposed method is tested on real and simulated data, it maintains
functionality even when there is missing data. However, the pro-
posed method relies on thermo-physical relationships among water
temperatures in the piping system and, thus, fails when the same
bias is simultaneously introduced to all sensors. The same issue will
arise if we opt for the Bayesian method to detect VAV sensor faults.
Additionally, modeling the dynamics in our case may necessitate
occupancy counts in the zone, thus posing challenges.

In [28], the authors use physical relationships between all the
sensors in ventilation units to generate a set of virtual sensors. They
use both linear and nonlinear regression models and establish a
confidence interval between the model error’s range. The fault is
detected when a data point deviates from the confidence interval.
Virtual sensors are economical and can be a great substitute for ex-
pensive and impractical physical sensors [29]. Gao et al. [13] detect
sensor failure by identifying the absolute deviation produced by
contrasting the output of virtual sensors with the actual measured
value. The virtual sensors are generated using the Long Short-Term
Memory (LSTM) model. Conceptually, the main distinction of our
approach is that we introduce real sensing redundancy into the
system for direct comparison rather than using correlations in the
system. Additionally, we control the data collection process with
a human-in-the-loop. The HVAC technician changes BMS data to
add variability to the data and thus obtains accurate results [41].

Extensive research has shown that traditional machine learning
algorithms exhibit a high level of efficiency in detecting faults in
different HVAC units. Additionally, they require fewer parameters
and computational resources compared to transformers or neural
networks. In [30], authors use a Support Vector Machine (SVM) to
detect both sensor and actuator faults in air handling units. The
performance of the model was verified on simulation data. Similarly,
Zhang et al. [43] developed eXtreme Gradient Boosting (XGB) to
detect and diagnose faults for the screw chillers. In [14], authors
use the K-Nearest Neighbor (kNN) technique to detect drift faults
in the chiller system. These three machine-learning techniques will
be used as a benchmark for our system.
3 HOW DO HVAC SYSTEMS WORK?
Before proceeding to explain FADED, it is important to explain
the basics of how an HVAC system controls the temperature and
ventilation levels of a zone, and what sensors are used as input to
the BMS system. The thermodynamics of a zone can be modeled
using a resistor-capacitor system [41]. A differential equation is
used to show the thermal model of a zone as in Eq. 1:

𝑀𝑛
𝑑𝑇𝑧𝑛

𝑑𝑡
= (𝑇𝑠𝑛 −𝑇𝑧𝑛 )𝑐𝑝𝑚𝑧𝑛 +𝑄𝑛 +

𝑇𝑜 −𝑇𝑧𝑛

𝑅𝑛,𝑜
(1)

The left term represents zone temperature change, where 𝑇𝑧𝑛 is
the zone temperature and 𝑀𝑛 is the zone’s capacitance. The first
term on the right side of the equation is the heat transfer from the
HVAC system through the zone’s supply vents and𝑇𝑠𝑛 , 𝑐𝑝 and𝑚𝑧𝑛

are supply temperature, the specific heat capacity of air and mass
airflow respectively. The second term, 𝑄𝑛 refers to the total load
in the area, which is the total thermal load produced by people
and equipment. The third term describes the inflow of heat from
the outside (external to the building) into the zone and 𝑇𝑜 and 𝑅𝑛,𝑜
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Figure 1: FADED System Overview

are outside temperature and thermal resistance of the walls and
windows between the outside and zone environment. Note that this
simplified model does not include the thermal diffusion that can
happen with adjacent rooms that share a wall. This simplification
is reasonable for buildings where the temperature differential will
be no more than 5 °C in the worst-case scenario (usually less than
this). Outside temperatures may have a much larger differential,
which is why the last term of the Eq. 1 is included.

As can be seen in Eq. 1 zone temperature, supply temperature,
and airflow are the main variables that affect the thermodynamics
of the building. HVAC systems control the supply temperature and
airflow tomodify zone temperature in accordance with control rules
and setpoint criteria. A BMS acts as the central nervous system
and facilitates monitoring and control of the HVAC system in all
zones. It gathers information from sensors, meters, and equipment
to provide real-time insights into a building’s performance and im-
plements a control logic to keep the zones working within specified
temperature and ventilation limits. When a building sensor fails
to provide correct input information, the BMS may fail to provide
adequate comfort and energy efficiency in buildings.

4 SYSTEM OVERVIEW
FADED connects commercial-off-the-shelf (COTS) sensors with a
mobile phone, allowing technicians to collect sensor readings from
a troubleshooting zone with a quick walk-through. It is important
to note that walkabouts are an essential part of established HVAC
maintenance and inspection protocols [3].

The basic operation is as follows. An HVAC technician enters the
room and deploys temperature and airflow sensors (§ 4.1) to increase
the information source of data as shown in Fig. 1. Here, the Testo410i
sensor is installed on the vent to record supply temperature and
supply airflow. The Govee sensor, on the other hand, is positioned
on the wall to record zone temperature; however, it also offers
flexibility to be installed on the desk or in the middle of the room.
Airflow and temperature sensor readings are transmitted to the
phone via Bluetooth. Meantime, the technician sends a command

to the BMS web interface using his phone (depicted as the red
solid line in Fig. 1). This command will suddenly change the supply
temperature, change the airflow, and/or a combination of both to
change the zone temperature. The idea is to introduce variability
in the system to improve data quality and model accuracy when
collecting data. The data is collected for 30 minutes at 5-minute
intervals (i.e. at times 0, 5, 10, 15, 20, 25, and 30 minutes), so we have
7 readings for the FADED sensors and 7 readings for BMS sensors.
These 14 readings are sent to the FADED framework (a server in the
cloud implementing the processing pipeline), where they are used
as window features for our machine-learning models after some
pre-processing steps (§ 5.1), i.e. filling in the missing values, and
applying a Min-Max scaler. We have separate pre-trained models
for each sensor (supply temperature, zone temperature, and supply
airflow) to detect, diagnose, and reconstruct faults. The pre-trained
classifier outputs (§ 5.2) the first and second predicted fault type,
i.e., the first and second most probable case. Technicians can further
use this second prediction class to make an informed decision about
the sensor condition. Note that one of the classes is Normal (i.e.
no-fault). In case of fault, the data is transmitted to the pre-trained
fault reconstruction model (§ 5.3) to estimate the parameter of the
predicted fault. Finally, the technician receives the first and second
most probable fault types with the fault’s parameter values. If the
fault is predicted normal we do not need a fault reconstruction step.
4.1 Hardware
Our hardware consists of a mobile phone used by the technician,
running our mobile app, along with two wireless COTS sensors.
As shown in Fig. 1, the Govee Bluetooth temperature sensor is
deployed on the wall, desk, or in the middle of the room to measure
the zone temperature, which ranges from -20 to 60°C. This sensor
allows us to collect temperature data on demand from the phone.

Additionally, Fig. 1 depicts the Testo 410i anemometer vane smart
probe. This sensor is attached to the supply vent or air diffuser and
may require multiple installations if there are several vents in a zone.
However, in commercial buildings, single VAV systems and vents
are more common than multi-VAV setups [5]. The Testo sensor
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Figure 2: Vent Area Estimation

Figure 3: Training Data Generation

measures supply temperature (from -20 to 60°C) and air velocity
(from 80 to 5,900 fpm) and also supports on-demand data collection.
Traditional methods, such as deploying fixed zone-level sensors,
are costly and pose significant integration challenges. Wireless
deployments also face issues with system longevity and costs. In
contrast, FADED sensors, overseen by humans and strategically
reused, offer a cost-effective and durable solution, eliminating the
need for extensive deployments.

4.2 Vent Area Estimation
Since our Testo 410i anemometer measures airspeed, we need the
effective cross-section area of the vent being used to estimate flow.
We developed a computer vision tool to facilitate duct area estima-
tion using a cell phone. This tool estimates the area of the open
vent with a Mean Percentage Absolute Error (MPAE) of 92.3%. Fig. 2
shows how the vent area was estimated using open holes in the
vent. Here, we use our Testo 410i sensor as a reference object with
a known size. The total area of the open holes is estimated in refer-
ence to the size of this object. The system uses grayscale conversion,
Gaussian blurring, edge detection, morphological operations, and
contour-detecting techniques to accurately find objects. The noise
and intensity variations are removed by applying grayscaling and
Gaussian blurring. Then, we use the Canny edge detection algo-
rithm to detect edges in the blurred grayscale image. After that,
we apply morphological operations such as dilation and erosion to
reduce the noise and fill the missing gaps, thus enhancing contour
detection. After detecting contours we remove the remaining noise

Table 1: Fault Parameter Values

Fault Type Zone temp
(°𝐶)

Supply temp
(°𝐶)

Airflow
(cfm)

Noise (𝜎1) [0.1, 0.24] [-4, 4] [1, 2.75]
Bias (𝑎) [-5, 5] [-5, 5] [-65, 65]
Drift (𝑏) [-0.25, 0.25] [-0.9, 0.9] [-17, 17]
Gain (𝑐) [0.72, 1.28] [0.72, 1.28] [0.72, 1.28]
Complete failure (𝑑) [18, 36] [18, 36] [90, 270]
Precision degrada-
tion (𝜎2)

[1.00, 2.35] [3, 7.05] [5.00, 27.50]

using the thresholding method and find the reference object by
clustering the contours. The proposed vent area estimation system
was implemented using the Open-CV library.

4.3 Data Selection
The American Society of Heating, Refrigeration, and Air-Condition-
ing Engineers (ASHRAE) offers a wide range of datasets to develop
fault detection algorithms and evaluate their efficiency, such as
ASHRAE RP-1312/1020/1043/1139 [9, 34, 36, 40]. However, these
datasets are generally designed for actuator faults in HVAC systems
and do not include the required sensor readings for each zone,
such as supply airflow, supply temperature, and zone temperature.
Therefore, ASHRAE datasets are not used for our sensor fault study.
In this study, we use real BMS data from a University building for
the past six months and real sensor readings. The building is a large
production building with a single large plant floor of 7,735𝑚2, with
a single duct terminal reheat HVAC system that has 6 AHU loops
and 154 zones in total.

4.4 Fault Modeling
As previously mentioned, it is hard to collect real faulty sensor data.
Most of the studies available in the literature inject faults in real or
simulated data as in [9, 34, 36, 40] and [15]. Moreover, these studies
contain only bias faults for temperature sensors with a limited range
of values (-4 °C, -2 °C, 2 °C, 4 °C). To the best of our knowledge, no
other study has been done to detect different sensor faults and be
sensitive to small fault error parameters. In general, it is difficult
to discover and fix some faults due to the perceived complexity of
measuring and modeling. We argue that such unrecognized faults
may cause “sick building” syndrome (SBS), with many symptoms,
including irritation in the eyes, nose, throat, headache, and fatigue,
linked to indoor environmental and psychosocial conditions [17].
Some HVAC faults may be undetected and compromise the health
and comfort of occupants failing to provide optimal ventilation [12]
and temperature [33]. Such unrecognized faults not only cause
health issues but also decrease the energy efficiency of buildings.
15% - 30% of energy wastage is due to HVAC failures in commercial
buildings [6]. To address this in our work, we analyze a larger
set of faults, including bias, drift, gain, precision degradation, and
complete failure, which have been studied in [7, 19, 23, 26, 27, 44].

Fault types. Below, we provide a detailed description of the
various types of faults. We introduced noise using a Gaussian distri-
bution with a mean of zero and a variance of 𝜎1 to all faults, except
for the precision degradation case. Here, we injected faults to BMS
readings and 𝑋𝑡 represent BMS reading discrete time steps 𝑡 .
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Bias. Bias fault occurs when sensor readings have slight variance
and offset concerning the actual readings. The offset intensity is
referred to as 𝑎 (°C for temperature values and cfm for airflow
values). Bias fault is defined as follows:

𝐵𝑖𝑎𝑠 = 𝑋𝑡 + 𝑎 + 𝑛𝑜𝑖𝑠𝑒 (𝑁 (0, 𝜎1)) (2)

Drift. In a drift fault scenario, sensor readings exhibit deviations
from actual values, often following a polynomial function. How-
ever, for simplicity, we will approximate this behavior with linear
changes rather than polynomial adjustments. The rate at which the
sensor readings deviate from the actual values is represented by the
parameter 𝑏 (°C for temperature values and cfm for airflow values)
at each discrete sample recording 𝑡 , where 𝑡 takes on discrete values
such as 0, 1, 2, etc. The drift fault can be described as follows:

𝐷𝑟𝑖 𝑓 𝑡 = 𝑋𝑡 + 𝑏 × 𝑡 + 𝑛𝑜𝑖𝑠𝑒 (𝑁 (0, 𝜎1)) (3)

Gain. Gain is a multiplicative fault, and it affects the sensor
readings by scaling them up or down. The parameter 𝑐 (°C for tem-
perature values and cfm for airflow values) represents the constant
fault associated with this gain.

𝐺𝑎𝑖𝑛 = 𝑋𝑡 × 𝑐 + 𝑛𝑜𝑖𝑠𝑒 (𝑁 (0, 𝜎1)) (4)

Complete failure. In a complete failure, the sensor outputs a con-
stant value and does not follow the trend in the actual sensor. Here,
𝑑 (°C for temperature values and cfm for airflow values) represents
the value at which the readings become stuck. The error model is
defined as follows:

Complete failure = 𝑑 + 𝑛𝑜𝑖𝑠𝑒 (𝑁 (0, 𝜎1)) (5)

Precision degradation. Precision degradation refers to the addition
of Gaussian noise with zero mean and random variance. Here,
𝜎2, the variance for precision degradation fault also incorporates
the small noise and is quite larger than the 𝜎1, variance for noise.
Precision degradation fault can be expressed as follows:

Precision degradation = 𝑋𝑡 + 𝑁 (0, 𝜎2) (6)

These faults can be caused due to the failure of electronic com-
ponents in the sensor, aging of the sensor, and other environmental
factors. Fig. 4 illustrates how temperature sensors operate under
different fault modes. Five faults have different patterns and be-
haviors. The error is constant for bias sensor fault, whereas in the
case of drift the sensor measurements deviate and get worse over
time. Moreover, in case of complete failure, the sensor output is
different from actual values, while there is a slight noise in sensor
readings for precision degradation. During a gain fault, the sensor
reading deviates from actual readings with some multiplicative fac-
tor. Also, Fig. 4 shows that in certain scenarios, particularly when
there is minimal variance in temperature changes, bias and gain
faults yield comparable outcomes. Therefore, to effectively differ-
entiate between these faults, we introduce variability to the system,
as elaborated in (§ 4). Here, technicians adjust zone temperature,
supply temperature, or supply airflow by issuing commands to
the BMS via phone. Overall, sensor fault identification can vary in
complexity depending on the nature and intensity of the faults.

Fault parameter values. Table 1 shows the range of fault pa-
rameter values and units of measurement. Each fault has ten pa-
rameters of different intensities within each range. The parameters
for temperature and airflow sensors are determined by analyzing

Figure 4: Behavior of different temperature sensor faults
compared to a normal (non-faulty) sensor

sensor patterns from BMS data. As shown in Table 2, zone and
supply temperature have different profiles. Zone temperature has
a small range, whereas supply temperature can quickly increase
to 51 °𝐶 when receiving a control signal from BMS to heat up the
room. The temperature accuracy of the Govee H5072 and Testo 410i
sensors are ±0.3°𝐶 [1] and ±0.5°𝐶 [2], respectively. The accuracy of
the velocity sensor is ±(39.4 fpm + 2% of measured value), and the
measurement is accurate within the range of 78.7 to 3937 fpm [2].
Thermistors, Precon type II, are used to monitor temperature in
our building. The sensor has an accuracy of ±0.36°𝐶 . So, to emulate
these sensor inaccuracies we injected noise into our data. We added
Gaussian noise with zero mean and different standard deviation
parameters to improve the accuracy of our models (see Table 1, last
row). Additionally, drift faults were injected with diverse starting
points to model existing and new drift faults.

5 MODELING SCHEMES
This section details the machine learning classifier used for fault
detection and classification, and the regressor used for fault pa-
rameter value estimation once a fault is detected and classified.
We demonstrate their performance and compare FADED with the
state-of-the-art data-driven FDDs.

5.1 Input Features and Training Data
Creating unified dataset. Real BMS data from a production build-
ing was used for training our fault detection data-driven models.
HVAC sensor readings change gradually with time, and actuation
rules are activated every 5 minutes, so there is no need to collect
and process data every minute, and we collected data every 5 min-
utes. In this study, we combine the data streams from two different
sources: the deployed FADED’s sensor and BMS.We align the times-
tamps of the data points to create a unified dataset. The timestamps
serve as a shared reference point to maintain temporal synchro-
nization between related measurements from the BMS and FADED.
So, we create separate datasets for zone temperature, supply tem-
perature, and supply airflow by merging the two data streams. The
temperature datasets encompass values ranging from 9.40°C to
51.60°C, while the airflow dataset ranges from 51 to 404 cfm. The
pre-processing pipeline consists of four major steps: data cleaning,
feature generation, scaling, and augmentation. Fig. 3 shows the
training data preparation pipeline for each sensor.

Data imputation. Since this is a real building, we encountered a
few instances of incomplete data due to sensor and BMS errors. The
missing values were filled using the linear imputation technique.
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Figure 5: Model accuracy vs. the lag feature size

Linear imputation assumes that the relationship between variables
is linear. Even though it is sensitive to outliers, linear imputation
was chosen for handling missing data due to its alignment, sim-
plicity, and ability to maintain data distribution and relationships.
Other imputation techniques like k-Nearest Neighbors imputation
may not be a good choice as they require more data. In [38], the re-
sultant comprehensive linear model permits the realistic simulation
of a building’s thermal behavior at the granularity of individual
zones, rendering it well-suited for utilization in Model Predictive
Control (MPC) with a streamlined set of control variables, thus,
zone temperature can be approximated with linear functions. When
we apply step change to supply temperature and airflow, sensors’
response to changes in the input variable exhibits a delayed and
gradual adjustment due to hysteresis. This gradual response is akin
to a low-pass filtering effect, which smooths out abrupt fluctua-
tions in the sensors’ output. As a result, over short time intervals,
the sensors’ behavior approximates linearity, meaning that their
response appears as a linear transition rather than erratic jumps or
oscillations [31]. This characteristic is crucial in applications where
precise and stable measurements are required, as it minimizes rapid
and undesirable variations in the sensor’s readings.

Feature extraction. Lagged features in data capture temporal
dependencies and trends, enabling models to learn from historical
behavior by including past values. The time difference between
each value is 5 minutes. Using both FADED’s sensor and BMS
readings helps to identify spatial dependencies and local variations.
So, we extracted lag features to capture both temporal and local
patterns in the specified time frame for FADED and BMS data. An
optimal time frame was selected by analyzing the performance
of the classification model at different lag window sizes. Fig. 5
illustrates how the accuracy of the classifier model (explained in
§ 5.2) changes with the increase in the number of features. There is
a tradeoff between the number of lagged features included in the
input vector and the time it takes to collect them. While including
more features helps, this comes at a cost, since more features mean
an HVAC technician running FADED will have to wait longer to get
a determination per zone. The correct threshold may also depend
on the accuracy assurances that a user may want. In our work,
we can see that after 7 features that correspond to 30 minutes of
readings, there is only a very small accuracy improvement for all
sensor types. Thus, we have 14 features that describe the sequential
dependencies in two-time series data (Building BMS and FADED
sensor data). Let’s denote the lag features for BMS as 𝐵1, 𝐵2, . . . , 𝐵7,
and the lag features for sensors as 𝑆1, 𝑆2, . . . , 𝑆7. Then, the input
vector 𝑈 represents the lag features for both the BMS and FADED

Table 2: Sensor Data Statistics

Sensor Min Max Mean Median IQR
Supply temp (°𝐶) 9.40 51.60 21.57 17.40 15.60
Zone temp (°𝐶) 17.60 25.80 21.61 21.40 1.02
Airflow (cfm) 51.00 404.00 188.46 205.00 7.00

sensors and is defined as follows:

𝑈 = [𝐵1, 𝐵2, . . . , 𝐵7, 𝑆1, 𝑆2, . . . , 𝑆7] (7)

Data cleaning. Sensors have different change patterns as seen
in Table 2. Supply temperature and airflow drastically increase
and decrease, whereas zone temperature fluctuates around some
value for a long duration of time. A higher interquartile range (IQR)
means wider dispersion of data, whereas, a lower value means that
data is clustered around the median. We selected time frames with
higher variability to make our models accurate. We calculated the
variance for each measurement using Eq. 8.

𝑠2 =
1

𝑁 − 1

𝑁∑︁
𝑡=1

(𝑋𝑡 − 𝑋 )2 (8)

Here, 𝑋 is the lag feature at sample t, 𝑋 is the mean of the lag
features, and 𝑁 is the number of lag features. We have 7 lag features
for both FADED sensors and BMS. We discarded data points where
the variance of lag features is less than 0.1 to ensure high-quality
training data. Model training and performance depend on effective
feature engineering and data pre-processing in addition to the
amount of the training dataset. In other words, the ’garbage-in,
garbage-out’ principle states that the quality of the data and the
way it is prepared are equally important to the model’s success.

Data augmentation. Zone temperature has a low variability
score compared to supply temperature and airflow. After clean-
ing and discarding the features we had 690 data points for zone
temperature and about 4000 data points for supply temperature
and airflow. It is difficult to collect faulty data in real-time, so we
artificially injected faults as it is done in [15].

In this study, we used BMS readings that were suggested as
normal by the facility manager. We augmented our highly variable
data by employing different fault types with various fault parameter
values and adding some lags to the BMS data. The fault models
used were explained in § 4.4. Overall, we got 4000 data points for
zone temperature and 20000 data points for supply temperature
and airflow. The training/validation and testing split was done by
taking 75% of the dataset to train and validate the model, and 25%
was used to test the models and report the system performance.

Data Scaling. Sensors have different ranges and sensitivity. In
this study, we compare different benchmark algorithms used in
related work, with some of them relying on distance, and using
original features can result in unstable biased results. Scaling fa-
cilitates faster convergence of optimization algorithms. For each
sensor, the scaler was fit on the training data to prevent informa-
tion leakage and then applied to the whole data. In this study, we
scaled our data using a Min-Max scaler. Min-Max scaler preserves
the relationship between variables ensuring they fall within the
range of [0, 1]. Unlike a Robust scaler, it keeps outliers, which are
important for our fault detection analysis. Additionally, it does not
require the normal distribution assumption like the Standard scaler.
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Table 3: Comparison of separate and meta-classification
models for faulty sensors

Model Sensor Accuracy (%) DR (%) FaR (%)
Separate Zone temperature 99.57 99.83 0.06

Supply temperature 98.67 99.82 0.10
Supply airflow 99.01 99.97 0.01

Meta Zone temperature 99.24 99.97 0.19
Supply temperature 94.14 98.36 2.18
Supply airflow 98.63 98.73 1.67

Table 4: Regression Model Performance Comparison

Model Pearson correlation RMSE
Linear 0.983 0.228
XGB Regressor 0.998 0.188

Also, in [35], among several techniques, the Min-Max scaler is iden-
tified as the most efficient, resulting in a 5-10% increase in accuracy
scores across various algorithms.

𝑋𝑡_𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋𝑡 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
(9)

5.2 Fault Detection and Classification
FADED employs a multi-class Light Gradient Boosting Machine
(LGBM) to detect and diagnose sensor faults. Our classification task
encompasses six classes: bias, complete failure, drift, gain, precision
degradation, and normal. We feed balanced data with 14 features to
perform multi-class classification as shown in Eq. 7. For the output
of the detection and classification model, we perform soft classifi-
cation, resulting in a 6-class classification task with probabilities
for bias, complete failure, drift, gain, precision degradation, and
normal represented as 𝑝𝑏 , 𝑝𝑐 𝑓 , 𝑝𝑑 , 𝑝𝑔 , 𝑝𝑝𝑑 , 𝑝𝑛 respectively. These
probabilities represent the likelihood of belonging to each class.
The output vector 𝑧 is defined as follows:

𝑧 = [𝑝𝑏 , 𝑝𝑐 𝑓 , 𝑝𝑑 , 𝑝𝑔, 𝑝𝑝𝑑 , 𝑝𝑛] (10)

This output vector represents the probabilities associated with each
class for the given input sample. Each element of the vector corre-
sponds to the probability of the sample belonging to the respective
class. To provide the final detection and classification output, we
select the class with the highest probability. The performance of
the system is assessed in terms of accuracy, detection rate (DR),
and false alarm rate (FaR) for each sensor. These parameters can be
calculated from true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) classification cases. Eq. 11 shows the
calculation for accuracy. It shows the portion of correctly classified
cases. For an efficient model, we expect accuracy to be 1.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(11)

In a multiclass classification scenario, accuracy measures the
overall correctness of the model’s predictions across all classes,
while the detection rate focuses specifically on the model’s ability
to correctly identify faulty classes. To calculate DR we combined
all the classes into faulty and normal instances. To ensure balanced
representation we downsample the data associated with the faulty

class to achieve parity with the normal class. The DR for our models
is estimated as in Eq. 12. It shows the fraction of actual faults
detected by our algorithm. We want it to be close to 1.

DR =
TP

TP + FN
(12)

Eq. 13 estimates the FaR, the cases where sensors are falsely clas-
sified as faulty. A score closer to 0 means that the system is not
misclassifying normal sensors as faulty. Here, we also use binary
output for computation.

FaR =
FP

FP + TN
(13)

Moreover, we implemented a single meta-classifier using scaled
data from three sensors along with separate classifier models for
each sensor. In order to build a single model, we balanced data by
downsampling data for supply temperature and airflow to match
the zone temperature’s training size. Table 3 shows the results for
these LGBM-based multi-class classifiers. Both models have high
accuracy and DR and low FaR. However, separate models show
higher accuracy for all three sensors. Particularly, it can classify
supply temperature with an accuracy of 98.67% compared to the
meta-model with 94.14%. Moreover, separate models make more
accurate classifications for zone temperature and supply airflow.
Also, it considerably decreases the false alarm rate for supply tem-
perature and airflow by almost 10-20 times from 2.18% to 0.10% and
1.67% to 0.01% respectively. Overall, the classification performance
of the models improves when we employ separate models for most
of the sensors. Therefore, in FADED we use three separate models
for our three sensors. Separate models help to better learn sensor
behavior for our classification tasks.

5.3 Fault Reconstruction and Correction
Another contribution of this paper is the fault parameter value
estimation and correction. For each fault detected by FADED clas-
sifier, we use regression models that are trained to find the model
parameter for each fault type. The model is trained with un-scaled
lag features and the parameters of the fault were used as label data.
Each fault has its own pre-trained model for each sensor type. Ta-
ble 4 illustrates a comparison of linear and XGB regression models.
We use different regression models to find the parameter of the
fault. As can be seen, the XGB Regressor is more accurate than
the Linear Regression model and can capture more accurately the
relationship between target and predicted values. It has a Pearson
correlation of 0.998 compared to 0.983 from the Linear regression
model. Most importantly, the XGB Regressor can reconstruct the
fault parameter values with an RMSE of 0.188, whereas the linear
regression makes less accurate estimations with an RMSE of 0.228.
The HVAC technician can further use the predicted fault parameter
value to assess the severity of the fault. The sensor can be replaced
or if possible manually or automatically re-programmed in the BMS
system to account for that fault. Knowing the full fault model, in-
cluding the specific parameters of the fault is very significant, as
this would allow the realization of self-healing buildings, similar
to biological systems in nature that are capable of adapting and
correcting to faults over time.

We use Pearson’s correlation (P) and Root Mean Square (RMSE)
to assess the performance of the reconstruction model. Pearson’s
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Figure 6: Confusion matrices for the zone temperature, supply temperature, and airflow.

Figure 7: Fault reconstruction (zone temperature)
correlation is defined as follows:

𝑃 (𝑋,𝑌 ) =
∑𝑁
𝑡=1 (𝑋𝑡 − 𝑋 ) (𝑌𝑡 − 𝑌 )√︃∑𝑁

𝑡=1 (𝑋𝑡 − 𝑋 )2 ∑𝑁
𝑡=1 (𝑌𝑡 − 𝑌 )2

(14)

where 𝑁 is the number of samples, 𝑡 is discrete instance in time,
𝑋 is the true parameters, 𝑌 is the predicted parameter and 𝑋 and
𝑌 are mean values for true and predicted values respectively. The
score ranges from -1 to 1 and shows a strong negative and positive
linear correlation between two continuous variables. If the score is
close to 0, it means that there is no correlation between true values
and predicted values. RMSE estimates the differences between true
values and predicted values. Particularly, it shows the average error
value by measuring the square root of the mean of the squared
differences between true and predicted values.

𝑅𝑀𝑆𝐸 =

√︄∑𝑁
𝑡=1 (𝑋𝑡 − 𝑌𝑡 )2

𝑁
(15)

6 RESULTS AND ANALYSIS
In this study, we utilize three main types of data: real BMS data
collected from a University building over the past six months, arti-
ficially generated fault-injected BMS data, and real sensor readings.
To ensure robust training and testing of our model, we expand the
dataset by augmenting the number of data points specifically for
zone temperature from 690 to 4000, and for supply temperature
and airflow from 4000 to 20000 data points as discussed in § 5.1.

For model evaluation and hyperparameter optimization, we em-
ploy a stratified 5-fold cross-validation technique. This approach

ensures that each fold of the cross-validation maintains the same
class distribution as the original dataset, thereby reducing bias and
improving the reliability of our model evaluations. Additionally, we
utilize Bayesian search for hyperparameter tuning, facilitated by
the BayesSearchCV class from the scikit-optimize library. Bayesian
optimization allows us to efficiently explore the hyperparameter
space and identify optimal model configurations, enhancing the
performance and generalization capabilities of our predictive model.

6.1 Performance Evaluation
Fig. 6 shows the confusion matrix for the classification of three
sensors using FADED. The zone temperature and supply airflow
have the best performance by correctly classifying almost all the
test cases. Complete failure fault, precision degradation, and normal
cases can be correctly classified almost with 100% accuracy. Bias
and gain faults can be classified with an accuracy greater than 96%.
Generally, these two faults are misclassified when there is not much
variability in BMS and sensor readings, where the multiplicative
gain and bias may have the same faulty effect. Also, normal cases
can be confused with drift when the measurements drastically
change in the given time frame due to changes made by the BMS
control logic. Our test data contains small drift parameters, so it may
be difficult to diagnose them due to noise and drastic fluctuations.

Fig. 7 shows the result of error reconstruction for zone tem-
perature. As can be seen, complete failure and gain faults can be
reconstructed accurately using this technique. Additionally, we
find bias parameters with an average error of 0.05 °𝐶 . Precision
degradation and drift faults also have high correlation and lower
average error values (0.03 °𝐶 and 0.01 °𝐶), but they still are in an
acceptable range considering the temperature sensor sensitivity.
It is worth noting that we are testing both new and existing drift
faults. So, it can be difficult to estimate the actual drift parameter
when you have different starting points.

Similarly, Fig. 8 shows the fault reconstruction results for the sup-
ply temperature. As it wasmentioned in § 4.4, we used different fault
parameter values for the supply temperature. The supply tempera-
ture has higher errors after reconstruction compared to the zone
temperature. The variation in the results can be explained by the na-
ture of these two sensors, the supply temperature changes rapidly
within a short period, whereas, the zone temperature changes grad-
ually over time. We have a high correlation for all the fault types
except for precision degradation faults. However, we have more
than 0.33 °𝐶 when we reconstruct bias and precision degradation
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Figure 8: Fault reconstruction (supply temperature)

Figure 9: Fault reconstruction (airflow)

faults. The parameters of bias faults can be quantified with an error
of 0.39 °𝐶 . For precision degradation, the average error is 0.33 °𝐶 ,
which still can be acceptable considering the dynamic nature of the
supply temperature. The supply temperature varies from 9 °𝐶 to 52
°𝐶 . So, the RMSE of 0.3 °𝐶 can be considered negligible.

Similarly, according to Fig. 9 the fault error model parameter
values for the airflow sensor can be accurately estimated except
for bias and precision degradation. Airflow sensors have different
ranges, so the average error of 1 cfm still can be acceptable. Accurate
estimation of fault parameter values can be difficult due to the
dynamic nature of the sensor as in supply temperature.

Table 5 shows the performance of error parameter quantification
for temperature sensors. Particularly, it describes how much we
will be off from actual temperature if we adopt error reconstruction
in terms of the temperature difference and temperature difference
in percentage. The temperature difference is estimated using Mean
Absolute Error (MAE) as shown in Eq. 16 and the temperature dif-
ference in percentage is calculated using Mean Absolute Percentage
Error (MAPE) as shown in Eq. 17:

MAE =
1
𝑁

𝑁∑︁
𝑖=𝑡

|𝑋𝑡 − 𝑌𝑡 | (16)

MAPE =
100
𝑁

𝑁∑︁
𝑡=1

����𝑋𝑡 − 𝑌𝑡

𝑌𝑡

���� (17)

Zone temperature has a negligible MAE score for bias, drift, and
gain faults, which is less than 0.2 °𝐶 . However, the reconstruction
of drift and precision degradation can result in a higher average
error, introducing around 4% to 8% divergence from true non-faulty

Table 5: Temperature Fault Reconstruction Error

Fault Zone
(°𝐶)

Zone
(%)

Supply
(0𝐶)

Supply
(%)

Bias 0.104 0.508 0.628 2.501
Complete failure 0.176 0.657 0.465 1.648
Drift 0.799 3.753 3.211 12.731
Gain 0.162 0.785 0.602 2.351
Precision degrada-
tion

1.647 8.024 4.811 23.132

Table 6: Airflow Fault Reconstruction Error

Fault Supply (cfm) Supply (%)
Bias 1.568 0.788
Complete failure 1.632 0.954
Drift 54.82 31.507
Gain 1.684 0.77
Precision degradation 30.353 15.848

values. On the other hand, quantification of drift and precision
degradation can cause the offset of 3-5 °𝐶 after the reconstruction
of supply temperature. On the contrary, bias, complete failure, and
gain faults of supply temperature can be corrected with small errors.

Table 6 shows that after reconstructing the supply airflow sen-
sor with predicted values we will experience minor alteration for
bias, and complete failure and gain faults, which is less than 2 cfm.
However, drift and precision degradation can cause alteration of
30-55 cfm. The MAE scores of these faults are very high causing
a large offset from the true value despite quite a strong linear re-
lationship between the actual and predicted values as shown in
Fig. 9. Reconstructing the drift parameter is hard when there is high
variability in lag features, where the difference between two lags
is several hundredths or thousandth cfm. Additionally, different
starting times, delayed data, and random noise exacerbate the drift
parameter reconstruction for airflow sensors.

Overall, for bias, complete failure, and gain, we can predict error
parameters accurately. However, other faults are hard to quan-
tify due to their nature. For precision degradation, the number of
readings is not sufficient to identify the mean of Gaussian noise.
Moreover, the variability of the data impacts the accuracy of the re-
construction. For instance, supply airflow and temperature change
drastically whereas zone temperature changes slowly over time. We
may need more data for modeling supply temperature and airflow
to capture their properties. Fig. 10 shows correctly classified fault
cases for three sensors and their parameters. Fig. 11 shows common
faults made by FADED. As was discussed previously, the algorithm
fails to differentiate bias and gain when there is not much variance
in the data. Also, the supply temperature fails to detect drift when
there is a significant change in the data. In addition, the magnitude
of the fault can also affect the classification results. Small precision
degradation faults can be falsely classified as drift or bias with small
magnitude. Overall, the system can accurately diagnose faults and
quantify the parameters in most cases.
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Figure 10: Correctly classified cases by FADED

Figure 11: Misclassified cases by FADED

Figure 12: Sensitivity Analysis: accuracy for different fault parameter values for zone/supply temperature, and airflow sensors

6.2 Sensitivity Analysis
We explore how our models perform on real data for various faults
with different fault parameter values, mentioned in § 4.4. Figure 12
shows the accuracy and detection rate of the models for different
fault types and parameters. As can be seen, bias, complete failure,
and gain faults are mostly correctly predicted as faulty and the
detection rate is 100%. However, sometimes, bias faults with the
parameters of -1 and 1 can be missed, and detection accuracy is
around 95%. Considering the dynamic nature of supply temperature,
±1°𝐶 may be acceptable in real life. However, when the magnitude
of the bias fault is greater or equal to 2, we can detect all fault
cases with an accuracy of 100%. Similarly, small drift and precision
degradation faults are classified as normal and the detection rate can
be about 97%. Also, we can see that bias and gain faults are confused
with each other, even though both of them are detected as faulty.

Misclassifications can happen when there is low variability in the
data and bias and gain faults output the same values at the same
set of fault parameter values. Overall, the classification accuracy is
approximately 97.5% for zone temperature and airflow sensors. We
can observe non-negligible misclassifications for complete failure.
Drifts are one of the complex fault types, and it is hard to detect
faults when the drift rate is very small ±0.05°𝐶 and ±0.1°𝐶 for zone
and supply temperatures. Overall, we can detect and classify faults
with an accuracy of above 90% for each sensor in all cases.

6.3 Baseline comparison
This study compares our LGBM-based FADED system with three
state-of-the-art machine learning FDDs mentioned in related work.
These are XGB, kNN, and SVM-based algorithms used to detect



FADED: FAult DEtection and Diagnostic
System for HVAC Sensors in Commercial Buildings

Figure 13: Real Experiments in a University Building

Table 7: Performance Comparison with other Schemes

Model Accuracy (%) DR (%) FaR (%)
Zhang et al. (XGB) [43] 96.67 98.26 1.28
Gao et al. (kNN) [14] 86.60 95.62 2.10
Montazeri et al. (SVM) [30] 98.14 99.32 0.71
FADED (LGBM) 99.08 99.87 0.06

and diagnose sensor faults in different HVAC units. The hyper-
parameters of these benchmark algorithms are estimated using
Bayesian Search as well. Table 7 shows accuracy, DR, and FaR for
each algorithm. As it can be seen, FADED has a higher accuracy and
detection rate, lower false alarm rate, and shows faster convergence
compared to other algorithms for multiclass classification tasks
while using real data traces from the BMS.

6.4 FADED Operational Experience
To close the loop, we used FADED to detect, diagnose, and recon-
struct faults in 4 different zones in our building, hoping to detect,
diagnose, and reconstruct potential sensor faults. Remarkably, the
model that was trained using data from a single zone showed a
significant degree of generalizability. This suggests that new zones
could successfully use the same pre-trained models without further
retraining or fine-tuning. These results highlight the generalizabil-
ity of our methodology, facilitating its practical application across
diverse zones within the building infrastructure.

Fig. 13 shows the results. Blue lines indicate normal, red failures,
and green shows fault detected with the second option being nor-
mal. Room 81 and room 75 are assumed to be in normal operation
as there were no registered complaints about those rooms. All the
sensors in rooms 81 and 75 are classified as normal according to
FADED. Room 77 and Room 80 were determined to be faulty by the
facility manager. In particular, Room 77 was very hot despite the fa-
cility manager’s and HVAC technician’s efforts to control it. During
experimentation, we also had problems with gathering quantitative
data for our test. The HVAC system was not responding to our step
functions when we forcefully made room to cool down or heat up
to a particular temperature. Other rooms reacted to that command
either by changing the supply temperature and/or supply airflow.

But in Room 77 these sensor values experienced slight fluctuations
only. We detected some bias faults for supply temperature and air-
flow and a small gain fault for zone temperature. However, from
our observation, the problem might be more complex and involve
actuator faults (we reviewed the control logic and sequence of op-
erations, and they were all correct). On the other hand, Room 80
was having some ventilation problems. FADED detected a complete
failure fault in the airflow sensor with the parameter of 150.42 cfm.
Zone temperature is predicted as having a bias of 0.18 °𝐶 , whereas
supply temperature is predicted as having drift with the magnitude
of -1.02 °𝐶 . However, for both zone and supply temperatures, the
second closest predicted class is normal. So given the predicted
type, the fault parameter value estimated, and knowing the second
closest predicted type might be useful in real-world scenarios and
help HVAC technicians to make informed decisions.

6.5 Discussion
Model selection was done by trial and error. We tried different
modeling techniques and we picked LGBM for classification and
XGBRegressor for fault reconstruction. While other techniques
like deep neural networks may provide slightly better results, they
are more difficult to train and they are less interpretable when
compared to FADED [20]. The margin for improvement is very
small since our classification error is very close to nil, so we are
quite satisfied. Feature engineering is a critical aspect of improving
performance in any data-driven scheme. In our case, the main
decision was to curtail the number of lagged features used in the
input vector. While a larger number of features can help improve
accuracy, the time it takes to collect more data while FADED is
deployed is costly in terms of employee time. We settled for 7
samples (30 minutes), which could be revised depending on the
accuracy/time tradeoff. This is one of FADED’s most salient features.
Facilities crews were quite impressed that we were able to find
sensor errors in only a half hour. Larger scale usability studies have
been left for future work. A piece of FADED that we may have over-
engineered is the computer vision algorithms used to do vent area
estimation. While the number of supply vents and diffusers in the
market is large, it is finite. Perhaps a simpler solution would have
been to classify the type of vent using a small database of vents since
the cross-sectional flow area for each vent is fully documented by



Altynay Smagulova and Alberto E. Cerpa

the manufacturers. We have left this for future work. FADED fails
when the reference sensors themselves become unreliable or faulty.
Therefore, technicians should ensure these redundant sensors are
not faulty before using them, but this should be doable as they are
mobile sensors and not embedded in the building infrastructure.

7 CONCLUSION
HVAC sensor faults hurt user comfort and energy efficiency, thus,
it is essential to identify and quantify them. The proposed approach
uses hardware redundancy, and machine learning models to fa-
cilitate labor-intensive, time-consuming, and expertise-dependent
fault detection and diagnosis process. FADED has less than 0.1%
FaR for zone temperature and airflow sensors. Also, it can classify
real zone temperature, supply temperature, and airflow faults with
an accuracy of 99.57%, 98.67%, and 99.01%. Moreover, FADED can
contribute to the development of "self-healing" buildings, where the
parameters in the BMS are automatically adjusted to compensate
for sensor faults to ensure optimal operation of the HVAC system.
RMSE for predicted fault parameter values is acceptable considering
the sensitivity of the sensors. The proposed method was tested on
a real building and it detected the existing temperature and airflow
sensor faults in the VAV unit of malfunctioning rooms.
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