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ABSTRACT
Widespread Pb (lead) contamination of urban soil significantly im-
pacts food safety and public health and hinders city greening efforts.
However, most existing technologies for measuring Pb are labor-
intensive and costly. In this study, we propose SoilScanner, a radio
frequency-based wireless system that can detect Pb in soils. This is
based on our discovery that the propagation of different frequency
band radio signals is affected differently by different salts such as
NaCl and Pb(NO3)2 in the soil. In a controlled experiment, manu-
ally adding NaCl and Pb(NO3)2 in clean soil, we demonstrated that
different salts reflected signals at different frequencies in distinct
patterns. In addition, we confirmed the finding using uncontrolled
field samples with a machine learning model. Our experiment re-
sults show that SoilScanner can classify soil samples into low-Pb
and high-Pb categories (threshold at 200 ppm) with an accuracy of
72%, with no sample with >500 ppm of Pb being misclassified. The
results of this study show that it is feasible to build portable and
affordable Pb detection and screening devices based on wireless
technology.

CCS CONCEPTS
•Computer systems organization→ Sensor networks; •Hard-
ware→ Sensor applications and deployments; • Computing
methodologies→Machine learning approaches.
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1 INTRODUCTION
Urban soils are significant resources and provide essential ecologi-
cal services such as growing produce, assimilation of organic waste,
stormwater management, greening cities, improving air and water
quality, and combating urban heat island effects [4]. However, nu-
merous studies have shown that urban soils are often contaminated,
primarily due to historical and current anthropogenic activities [28].

Lead (Pb), an invisible, odorless neurotoxin, is of particular con-
cern, given its widespread presence in the environment and strong
association with neurocognitive disorders and aggression in adoles-
cents - especially for children [1, 24]. Pb is found to be present at

elevated levels in urban soils worldwide. In New York City, it was
found that over 50% of the garden soils tested contained more than
400 parts per million (ppm) of Pb – the previous general threshold
set by the U.S. Environmental Protection Agency (EPA) and the
New York State Department of Environmental Conservation [5]. In
an official statement released on January 17, 2024, to strengthen the
safeguards to protect families and children from Pb-contaminated
soil, the U.S. EPA lowered the screening level for Pb in soil at resi-
dential properties from 400ppm to 200ppm [10], which is now the
current screening standard. There is an urgent need to screen ur-
ban soils for traces of metal contaminants (such as Pb) as they can
significantly impact public health and the safety of food grown in
urban community gardens [22, 25].

Currently, composite soil samples are commonly sent to commer-
cial or academic laboratories for analysis, utilizing chemical process-
ing techniques and advanced instrumentation. Such analysis tends
to require substantial labor and incur significant expenses [34], and
thus poses challenges for many urban communities. These commu-
nities, often characterized by economic disadvantages, a prevalence
of minority or marginalized populations, and a disproportionate
burden of environmental contamination, face particular difficulties
in accessing related resources. Furthermore, soil Pb is highly het-
erogeneous at a small scale, even within the same garden [12, 15].
Pb levels can vary by more than an order of magnitude at different
locations within the same garden [3]. Thus, a composite soil sample
is not able to reveal such variations and will miss hotspots that
may pose the most health risks. While Portable X-Ray Fluorescence
(pXRF[40]) has emerged as a handy tool for in-situ (or lab) screening
of Pb and other metals in soils [11, 19, 27, 30, 33, 35, 42], the in-
strument typically costs $20,000-60,000, which is not affordable for
most communities. Therefore, there is a need to develop low-cost
alternatives to detect Pb in situ, so as to be able to accurately map
sites for contamination. This study aims to address this need by
examining the feasibility of developing an accessible and affordable
Radio Frequency (RF) based wireless sensor that can monitor Pb.

As a rapidly emerging technology, radio frequency-based wire-
less signals have shown capacity in material-level sensing in recent
years, such as liquid classification/testing [6, 7, 20, 29], food/fruit
quality monitoring [14, 36]. However, in the field of soil sensing,
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Table 1: Related work of RF-based soil sensing.

System Method Moisture Salinity Lead Contribution Sumary
UHF RFID tags [2] RFID - signal strength Y N N First COTS system testing soil moisture
Strobe [8] Wifi - relative ToF Y Y N First work considering salinity of soil
GreenTag [39] RFID - signal strength Y N N Greenhouse setting
CoMEt [16] RF - ToF 2GHz-4GHz Y N N Moisture estimation without burying parts
SoilScanner[This Work] Wifi + RFID N/A N/A Y First work considering individual salt in soil

material-level sensing is still challenging due to the complexity of
the soil medium [43].

In this study, we aim to examine the feasibility of measuring
contamination of Pb in soil through RF-based technologies. The
key idea of this study is that when RF signals, such as Wi-Fi (2-
5GHz) and RFID (Radio Frequency Identification) System [41] (∼
900MHz) are transmitted by an RF transmitter, they are affected
by the medium through which these signals propagate [31]. The
propagation medium reflects, refracts, or absorbs the RF signal, and
this property varies depending on the composition of the medium.
By examining the signal at the RF receiver, we can infer the compo-
sition of the medium. We have observed that different frequencies
of RF signals react differently to different salts. Thus, a sensing
system that incorporates RF signals at various frequency bands
is proposed here. Our experiments include the following: First,
software-defined radio is used to demonstrate that Pb (lead chlo-
ride salt) has a distinct effect on different frequencies’ RF signals
than NaCl (sodium chloride, a common salt in soils) [37]. Second,
a commercially accessible RFID device is used to see if the afore-
mentioned observations remain valid. Next, a simple regression
system is developed to demonstrate the feasibility of measuring the
contents of two different salts, in this case Pb(NO3)2 and NaCl in
the soil. We then built a machine learning model trained on 22 field
samples and showed that we could classify Pb level in soil (at the
current U.S. EPA screening level of 200ppm [10]) with an accuracy
of 72% and recall of 80%. Finally, we discussed potential future work
to make the sensor device robust and applicable to real-world soil
conditions.

The main contributions of the work are as follows.

• We introduce SoilScanner, the first RF-based soil compo-
nents analysis tool that can detect Pb contamination in soil.
Existing RF-based wireless sensing systems have only been
used for moisture and salinity sensing.

• We mathematically proved the feasibility of sensing differ-
ent salts using RF signals. To our knowledge, this is the first
work on modeling individual salt components in the soil.

• We open-source the first RF soil dataset that contains 23
lab-prepared “control” soil and 22 field soil samples. The
dataset includes soil properties and RF signatures from our
SoilScanner system.

2 RELATEDWORK
Existing soil heavy metal (including Pb) detection: Widely
adopted high-accuracy soil contamination detection techniques
are all non-RF based, including inductively coupled plasma mass

spectrometry (ICP-MS) [23], Atomic Absorption, X-Ray Fluores-
cence [9], etc. The trade-off of these high-accuracy methods is
the high labor costs and lab test requirements. While the portable
XRF instrument [32] enables the in-situ testing capacity, its price
is in the range of $20,000-60,000, which is not accessible to most
economically disadvantaged communities or gardeners.

Terahertz spectroscopy is another emerging technology utiliz-
ing signals between RF range and laser optical region for heavy
metal detection in soil [21]. By analyzing the reflectance of tera-
hertz radiation, researchers can generalize the pattern of the signal.
However, the terahertz sensor is also expensive ($1,500-3,000), and
the portability is also a concern.

RF-based soil sensing: We summarized the existing RF-based
soil sensing techniques in Table 1. Bechet et al. utilized a com-
mercial off-the-shelf (COTS) RF system to test soil moisture [2].
Their work demonstrated the use of an RFID tag with a reader to
estimate soil moisture. The moisture level is estimated from the
signal power reflected from the tag. RFID has also been applied to
greenhouse settings with improved accuracy [39]. However, salts
in soil can affect the accuracy of single-band power-based moisture
measurements because salt changes the electronic conductivity
of the soil and affects the power of the signal received by the re-
ceiver. To overcome the salt interference of the power-based RF
systems, researchers proposed methods that used the signal Time
of Flight (ToF) instead of the power. Strobe [8] utilized a limited
bandwidth WiFi frequency signal to measure the relative time of
flight between the three antennae buried underground and then
measured moisture by ToF and salinity by signal power. Note that
the salinity measurements reveal the total concentration of all salts
in the soil, instead of individual salt or contaminants. Additionally,
Comet [16] proposed a reflection-based RF sensing approach for
detecting moisture without disturbing the soil, such as excavation
or embedding antennas underground.

To our knowledge, this study is the first attempt to differentiate
individual salts in soil using RF signals, and this is an essential step
for building an in-situ Pb measuring system in the future

3 BACKGROUND
3.1 RF signal propagation
RF signals are electromagnetic waves in the frequency range of
3KHz to 300GHz, including the bands that carry data through wire-
less communication systems such asWi-Fi, FM radio, and Bluetooth.
An RF system consists of a sender that transmits an RF signal, a
receiver that receives both the direct and indirect reflections of the
RF signal and a transmitting medium in between. Consider an RF
signal: a single-tone cosine wave of amplitude𝐴𝑠 , frequency 𝑓 , and
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phase 𝜙 transmitted by the sender, the signal received is given by
the following equation:

𝑆𝑟 (𝑓 , 𝑑) = 𝐴𝑠𝑒
−(𝛼+𝑗𝛽 )𝑑 (1)

Where 𝑆𝑟 represents the received signal,𝑑 represents the distance
traversed by the signal, 𝛼 represents the attenuation coefficient
(signal loss per unit of distance traveled caused by the medium), and
𝛽 represents the phase coefficient (phase shift per unit of distance
traveled caused by the medium).

In any transmitting medium, the power of the signal decreases
exponentially as distance (𝑑) increases. If the transmission medium
is solely air, the signal will spread out naturally and be attenu-
ated along the free space path. For other transmission mediums,
a portion of the signal is absorbed, and the rest either penetrates
through or is reflected and scattered by the medium. The absorp-
tion/reflection ratio depends on the frequency of the transmitted
signal and the characteristics of the medium. For example, a metal
object is a good reflector of RF signal; RF signals of the lower fre-
quency range can pass through an object while high-frequency RF
signals are more reflected by materials.

Hence, the RF signal received by the receiver depends on three
main factors: 1. frequency of the RF signal sent by the transmitter; 2.
distance (𝑑) between transmitter and receiver; and 3. characteristics
of the transmission medium. In an RF sensing system transmitting
signal and distance (𝑑) between the sender and receiver are usually
known, thus signal propagation will only be affected by the attenu-
ation coefficient (𝛼) and phase coefficient (𝛽) of the transmitting
medium. This can be used to infer and differentiate the composition
of different mediums.

3.2 RF-Signal propagation in soil
In the context of soil medium, both moisture and salinity exert
notable influences on the signal. Moisture affects the signal by
predominantly changing the dielectric constant 𝜖′𝑟 of the medium.
The dielectric constant is a fundamental property that governs
the capacity of a material to store electrical energy. The dielectric
constant of pure water is relatively high, at 80, in contrast to other
prominent constituents found in soil, such as sand (ranging from 3
to 5) and air (1). The significant disparity in the dielectric constant of
water and other materials allows for the possibility of determining
moisture level through dielectric constant measurement. Directly
measuring the dielectric constant is difficult; however, it can be
estimated by utilizing the apparent dielectric permittivity of the
soil, represented as 𝜖𝑎 , which can be determined through in-situ
measurements. Apparent dielectric permittivity can be directly
calculated through the velocity of the signal penetrating through
the soil by equation 𝜖𝑎 = (𝑐/𝑣)2, where 𝑐 represents the speed of
light. In practice, determining velocity (𝑣) involves measuring a
signal’s𝑇𝑜𝐹 as it traverses through the soil. Given that the distance,
denoted as𝑑 , is known, the velocity (𝑣) can be calculated by dividing
the 𝑑 by 𝑇𝑜𝐹 . After apparent dielectric permittivity is measured,
moisture content can be determined using the Topp equation [38].

Soils commonly consist of both moisture and various substances,
including salts like NaCl and Pb(NO3)2. The presence of salt in soil
has an impact on its electrical conductivity (𝜎), which refers to
the soil’s capacity to conduct an electrical current. Electrical con-
ductivity impacts the signal power. In the controlled experiment,

we observed that different frequency signals exhibit different re-
sponses to different salts. Therefore, a multi-band RF-based system
is designed to understand the potential for differentiating various
soluble salts in the soil, including Pb which is a ubiquitous contam-
inant.

4 DESIGN
An overview of the SoilScanner system is shown in Fig. 1. The
prepared soil (detailed in the implementation section) is placed in a
1L plastic container between the fixed transmission and receiving
antenna. The transmitter emits short periods of single-tone RF
signal at 700-1000MHz and 2.3-2.5GHz with a step of 0.5MHz. Then,
the received power spectrum is passed to the machine learning
(ML) model for further analysis.

4.1 RF signal affected by different soil salts
The insight of themulti-frequency-based power spectrum collection
system can be summarized as follows.

(1) The electrical conductivity (𝜎) [18] of each salt ex-
hibits variations based on its density and exhibits
distinct responses to alterations in the frequency of
the surrounding electromagnetic field.
The relationship between the density and electrical conduc-
tivity of different salt solutions exhibits variations when
subjected to constant magnetic field frequency, tempera-
ture, and pressure. The varying current-carrying capacities
and saturation levels of different ions offer an explanation.

(2) The impact of the ambient magnetic field on vari-
ous salt solutions varies. For example, the application
of a magnetic field leads to an increase in the conductivity
of NaCl, MgCl26H2O, and KCl. The solubility of MgSO4,
CaCl22H2O, and NaHCO3 exhibits a contrasting decrease.
[13]

In a controlled environment with constant temperature and pres-
sure, the conductivity of each salt 𝑖 can be expressed as a function
𝜎𝑖 (𝑓 ) of the varying frequencies 𝑓 of the applied electromagnetic
wave. In addition, it is important to note that soil is composed of
a diverse array of salts. The electrical conductivity (𝜎) of soil is a
comprehensive measure that encompasses the collective impact of
all these salts.

𝜎𝑠𝑜𝑖𝑙 (𝑓 ) = 𝜎
𝑆 ( ®𝑑 ) (𝑓 )

The density of each salt is denoted by the vector ®𝑑 . And the function
𝑆 is the combination function of all salts’ conductivity.

When a soil sample is placed between a transmitting and a re-
ceiving antenna, the signal attenuation percentage can be measured
and defined by the attenuation factor. [8]

𝛼 =
2𝜋 𝑓
𝑐

√︂
𝜖′𝑟
2
[
√︁
1 + tan2 𝛿 − 1] (2)

where 𝜖′𝑟 is the dielectric constant, 𝑐 is the speed of light, and
tan𝛿 is the loss tangent of the transmitting medium soil.

tan𝛿 =

𝜖′′𝑟 (𝑓 ) + 𝜎𝑠𝑜𝑖𝑙 (𝑓 )
2𝜋 𝑓 𝜖 ′0

𝜖′𝑟
= 𝑙 (3)
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Figure 1: Flow chart of SoilScanner.

where 𝜖′′𝑟 (𝑓 ) is the dielectric loss, which is the energy required
to heat a dielectric material in an alternating electric field. Loss
tangent is noted using parameter 𝑙 .

Therefore, at each frequency, when dielectric constant 𝜖′𝑟 is
known, the power of the signal transmission is related to the con-
ductivity of the materials and the dielectric loss of the materials.

𝑃𝑜𝑤𝑒𝑟𝑠𝑜𝑖𝑙 (𝑓 ) ∝ 𝑙𝑠𝑜𝑖𝑙 (𝑓 ) = 𝑙
𝑆 ( ®𝑑 ) (𝑓 )

For each salt 𝑖 , the loss tangent varies as the frequency changes
due to the fact that the dielectric loss of each salt varies as the
frequency changes [17] as well as insight 1 and 2 that electric con-
ductivity of each salt varies differently when at different frequency
magnetic field.

Since the objective is to determine each salt concentration in
the soil, the question can be expressed as the following mathemati-
cal problem. Outputs consist of the densities {𝑑𝑖 }𝑎𝑙𝑙 𝑠𝑎𝑙𝑡𝑠 of each
distinct salt 𝑖 . The input is the power transmitted and received
at each frequency 𝑓 , 𝑃𝑜𝑤𝑒𝑟𝑠𝑜𝑖𝑙 (𝑓 ), which is proportional to the
loss tangent of the combined salts when the moisture level and
environmental factors (temperature, pressure) are known.

A learning system can then be developed. The system will accept
𝑃𝑜𝑤𝑒𝑟𝑠𝑜𝑖𝑙 (𝑓 ) at distinct frequencies 𝑓 as inputs and will output the
density of each salt in the soil. The number of inputs will vastly
exceed the number of outputs, resulting in a high capacity for
estimation.

4.2 Learning algorithm for lab prepared
controlled soil samples

We begin our analysis with controlled soil samples prepared in the
lab. For these samples, we spiked "clean soil" with two different
salts—NaCl and Pb(NO3)2, in varying quantities. Details of the soil
preparation are provided in Section 5.3.

We first analyze the power spectrum of the data and then apply
two key measures to build a regression model that estimates the
concentration of Pb in the soil.

This section aims to develop a method for choosing parameters
to distinguish between two different salts using data analysis. Since
all other properties of the lab-prepared soil were the same except
for the NaCl or Pb(NO3)2 content, a narrow frequency band is

sufficient to characterize the variation in Pb concentration. The
selected frequency band showed the most significant correlation
with Pb concentration.

Specifically, we introduce two keymeasures: Diff800 andDiff2300.
Diff800 shows how much the power of the signal changes between
810.1MHz and 790.1MHz, while Diff2300 shows the same between
2408.6MHz and 2401.1MHz. By subtracting readings between two
adjacent frequencies, the changes in the slope caused by Pb become
more apparent and can be better evaluated. This process emphasizes
the relative relationship between frequencies.

By concentrating on these measures, we hope to go beyond envi-
ronmental influences and better understand how soil composition
affects RF signal behavior. This structured approach provides a clear
method for selecting parameters, making it easier to classify and
differentiate between different salt types in soil samples. This con-
tributes to the advancement of RF signal analysis in environmental
research and monitoring.

4.3 Learning algorithm for uncontrolled field
samples

Next, we analyze 22 field soil samples collected from various loca-
tions around a large metropolitan area. The details of the sample
preparation are provided in Section 5.3. AnML-based model, shown
in Fig. 12, was built for binary classifying soil by criteria of 200ppm
of Pb, the new screening level for Pb in the residential area set by
U.S. EPA in early 2024 [10].

4.3.1 Feature Engineering. Tomake the learning process easier and
reduce near-frequency data redundancy, we design the following
feature engineering techniques:

• Frequency hopping: instead of using all the frequencies’,
we select one frequency every certain interval.

• Frequency aggregation: similar to the hopping technique,
we select the average value in that interval instead of se-
lecting only one frequency every certain interval.

• Weighted frequency aggregation: as the name suggests,
instead of giving every interval a uniform weight, we se-
lectively weigh the intervals where we can see the most
variance in the data.
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(a) USRP low-frequency range setup. (b) USRP high-frequency range setup.

Figure 2: USRP setup.

4.3.2 Train-test-split. Before splitting the dataset, we binary en-
coded each sample’s Pb level as 0 and 1 by separating at the 200 ppm
threshold. After encoding, 10 samples were classified as exceeding
the amount of Pb (1), and 12 samples were classified as within the
safe threshold (0).

We utilized Leave-one-out cross-validation (LOOCV) for the
train-test-split for our dataset. LOOCV is a technique for evaluating
amachine learningmodel’s performance by training it on all but one
data point and then testing it on the one held-out data point. This
process is repeated for each data point, and the average performance
across all iterations is used to estimate the model’s generalization
error. For smaller datasets, LOOCV has the benefit of providing an
unbiased estimate of the model’s performance, and it maximizes
the information used for model assessment without sacrificing data.
In our system, we repeat LOOCV 𝑘 times and calculate the average
performance of all 𝑘 iterations for reduced bias of the noise added
in the Data Augmentation step below.

4.3.3 Data Augmentation for Training Data. For the model to be
location-invariant and robust against noise, we need to increase the
number of training samples. To do that, we designed a simple data
augmentation technique that can up-sample the training dataset by
a factor of 𝑟 . First, all training samples were copied 𝑟 times. Then,
random noise,𝑛, was added at each frequency power of each sample
where, 𝑛 ∼ N(0, 𝜎2), and 𝜎 ∼ U(0, 3). The reason for such a range
for the standard deviation is that when we tested the same sample
at different locations, we observed a standard deviation in the data
that is similar to that range.

𝑋
up-sample by r
−−−−−−−−−−−−→ 𝑋𝑢

add Gaussian noise−−−−−−−−−−−−−−−→ 𝑋𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑

4.3.4 Model Training. To achieve high robustness and performance,
we utilized a soft voting classifier. A voting classifier is a type of
ensemble learning method in which several base models are trained
independently on the same dataset, and their predictions are com-
bined through a voting mechanism to make the final prediction. In
soft voting, the output probabilities of each base model are averaged
for each class, and the class with the highest average probability is

chosen as the final prediction. This method takes into account the
confidence of each base model in its prediction rather than just the
raw class labels. By combining multiple models with potentially
different strengths and weaknesses, a voting classifier achieves bet-
ter generalization and robustness compared to any individual base
model. Our diversified base model includes Logistic Regression,
SVM, Decision Tree, and Naive Bayes. Detailed model implementa-
tion is shown in Fig. 12.

5 IMPLEMENTATION
5.1 Hardware
A software-defined Universal Software Radio Peripheral (USRP), US-
RPX310 with two UBX-160 daughterboards operating at wideband
frequencies ranging from 10MHz-6GHz was used. One daughter-
board is the sender and is connected to a Laird S9025PL antenna for
testing frequencies less than 1GHz. For frequencies above 1GHz,
the sender daughterboard is connected to Taoglas Limited’s ultraw-
ideband FR4 antenna. The other daughterboard is the receiver and
is connected to an EC742IOM06H-PIM-NF wideband antenna for
frequencies less than 1GHz and Taoglas Limited’s ultra-wideband
FR4 antenna for testing frequencies above 1GHz. The two antennas
are separated by 18cm and attached to the inner top of a plastic box
with a dimension of 15cm*15cm*20cm. During an experiment, the
sender antenna is attached to the top of a box, and the receivers are
attached to the bottom. For all experiments, the soil is placed in a
closed plastic box in the middle, 5-8cm from the sender and 2cm to
the receiver, as shown in Fig. 2. The USRPX310 device is connected
to a Lenovo Thinkpad laptop with a 1 GHz ethernet interface.

5.2 Software
The data acquisition system is programmed using GNU Radio ver-
sion 3.10.5.1, an open-source software that controls the USRP with
a graphic interface.

A sending signal comprises a base signal modulated on a carrier
wave. The base wave is a cosine wave at a frequency of 100k. For
each frequency range (modulated wave frequency 700-1000Mhz and
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2300-2500Mhz), the initial carrier wave frequency is set to be the
lower bound of that specific range, with a sample rate of 1 million
samples per second and a gain value as the maximum value of the
antenna capacity, 6dBm. The frequency shift is done on the carrier
wave controlled by a global parameter 𝑓 𝑟𝑒𝑞_𝑐𝑜𝑛𝑡𝑜𝑟𝑙 , updated at
the receiver side.

On the receiver end, the raw signal is first received and demod-
ulated at the USRP source block. Then, it is passed on to a Fast
Fourier Transform (FFT) unit, which performs an FFT on every
1024 samples received. The FFT converts the time domain signal
into the frequency domain. The power and standard deviation are
then calculated by averaging 100 data points (≈ 0.2sec) processed
from the FFT processing unit. If the standard deviation exceeds a
threshold of 0.02dBm, the program will recollect the signal for that
specific frequency. The system will skip to the next frequency if it
misses the standard threshold five consecutive times and report to
the user. If successful, the data collection program will increase the
𝑓 𝑟𝑒𝑞_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 variable by a step of 0.5MHz and collect data for the
next frequency.

After all the data on the frequencies are collected, both R and
Python are used for data analysis.

5.3 Soil Preparation
For evaluating our system, we prepared two sets of samples: 23 lab-
prepared controlled soil samples, and 22 field-collected uncontrolled
soil samples.

Lab prepared controlled soil samples: For the soil experi-
ments, we chose loamy sand topsoil with low salt (<75 ppm), low
Pb content (<5 ppm), and low organic content (<3%) as the base soil.
The soil texture (loamy sand) is a common natural soil in the New
York City (NYC) metropolitan area. The soil was air-dried for five
days, passed through a 2mm sieve, and fully homogenized before
being used. This soil was then divided into 1kg each and placed in
a 1.7L IKEA Pruta plastic food container. The Pruta containers are
built with thin plastic walls, reducing the signal loss when trans-
mitting through the container. We then prepared two different salts.
NaCl (table salt, with 97 − 99% NaCl) and Pb(NO3)2 (a common
soluble Pb compound). It should be noted that once Pb(NO3)2 is
mixed with soil, Pb can react with various components in the soil
and become less soluble.

Finally, we carefully spiked each sample using varying amounts
of the above two salts, separately or as a combination of two salts.
The different compositions are listed in the Table 2. The soil in each
container was thoroughly mixed after spiking. All these samples
were rested for at least 24 hours before testing.

Table 2: Soil variables for experiments in this study.

Sample ID Base Soil mass(g) NaCl (ppm) Pb(NO3)2(ppm)
1-7 1600 [0,50,100,200,400,1000,2000] 0
8-14 1600 0 [200,400,1000,2000]
15-23 1600 [100,400,2000] [100,400,2000]

Field collected uncontrolled soil samples: 22 distinct soil
sampleswere collected from the field (gardens, farms, and other land
uses in the NYC metropolitan area). The composition of these soil
samples, including moisture, organic content, gravel, salt, pH, etc.,

Figure 3: Location dependency test.

Figure 4: Remounting test.

was carefully examined at the Urban Soils Lab at Brooklyn College.
The uncontrolled samples offer substantial diversity beyond the
lab-spiked samples. These analyses revealed significant variability
among the samples, which will be discussed in detail in Section
6.4.1.

6 EVALUATION
We first demonstrate the robustness of the sensing system through
its reprehensibility through two tests: the remounting test and the
location test. Then, we analyze the effects of Pb(NO3)2, NaCl, and
their combined effect on signals using controlled soil samples. Next,
we verify whether these patterns are also observable in COTS RFID
devices. Subsequently, we evaluate the performance of regression
models built on controlled soil samples. Finally, we evaluate the
machine learning model’s performance for the uncontrolled field
soil samples.

6.1 Location Robustness
One field sample’s data was collected at two locations and then
compared to understand the effect of location dependency in our
RF sensing system. After removing the background signal, they
are plotted in Fig. 3. Except for the small variation towards the
higher frequencies, both signals are well-matched. The variation
is expected because of interference with the WiFi signals present
in the environment. However, this higher frequency interference
can be further reduced by placing the SoilScanner system inside a
metal box.

6
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Figure 5: Received signal power (in dBm) variation with testing frequency a) 700-1000MHz, b)2300-2500MHz. Different colors
represent different samples with varying Pb(No3)2 contents. c) is a zoomed-in view of b).

Figure 6: Received signal power (in dBm) variation with testing frequency a) 700-1000MHz, b)2300-2500MHz. Different color
represent different samples with varying NaCl contents. c) is a zoomed-in view of b).

6.2 Remounting
A remounting test was performed to check the performance of our
system. One field soil sample was tested four times at the same
place, remounting the box every time between data collection. The
signals are plotted in Fig. 4. As evident from the data, there is no
visible difference in the received signal in the four different trials.

6.3 Analysis on lab prepared controlled soil
samples

6.3.1 RFID and WiFi range signals for soils spiked with Pb(NO3)2.
Soil samples spiked with only Pb(NO3)2 (samples 15-18, see Table 2)
were first tested with the RF setup at two distinct frequency ranges:
700-1000MHz with the Laird antenna and 2.3-2.5GHz with the WiFi
high-frequency antenna. In addition to the spiked samples, two soil
samples were tested to establish a baseline - 0: the base soil sample
with no added water represented by the red line, and 1: the base soil
sample with 20% of water represented by the lime green line. The
average power of the received signal is plotted against frequency
and shown in Fig. 5 and the average power of the received signal

Figure 7: Received signal power (in dBm) variation with NaCl
and Pb(NO3)2 concentrations. Different colors represent dif-
ferent frequencies of the tested signal.
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Figure 8: Different frequency range (x-axis) versus the RSSI (y-axis).

is plotted against Pb(NO3)2 concentration for selected frequency
bands in Fig. 7. These results, while obtained in the same setup,
were repeated over multiple days and were found to be consistent.

In Fig. 5a, When comparing the curve for the base soil (no water)
and the curve for all other soils with water (moisture > 0), peaks for
the latter slightly shifted towards 800MHz. This is because moisture
can lead to higher permittivity of soil and a decrease in the speed
of the signal that causes the peak shift. This is consistent with the
findings in the literature that measured moisture content using RF
technologies [8]. In Fig. 5a, if focused on 800MHz, The power of the
received RF signal increases with Pb(NO3)2 concentration in soil
(Fig. 7). The magnitude of increase between samples (e.g., ∼ 5dBm
for Pb concentration from 200ppm to 400ppm) is significant. This is
because, with an increase of every 6dBm, the signal’s amplitude is
doubled. However, at frequencies higher than 825MHz, the received
RF power appears to decrease with increased soil Pb content, shown
as line b in Fig. 7. This shows that the effect of Pb(NO3)2 on received
RF power varies at different frequencies, even within the same RFID
band in the current test setup.

Fig. 5b plots the average power of the received RF signal in the
WiFi frequency range (2.3–2.5GHz). It should be noted that the
received RF power of base soil is very high (more than 10dBm
higher) compared to all the other samples with moisture. Fig. 5c is
a closer view of all the sample curves with 20% moisture. It can be
seen that the power of the RF signal decreases with the increase
in Pb content in the soil. This pattern is consistent within this
frequency range. However, the magnitude of the decrease in signal
power due to Pb(NO3)2 is slightly smaller than that in the RFID
900MHz band. Selected 2.4GHz band signal power response to soil
Pb concentrations is plotted as line c in Fig. 7. Here the difference
in reflected signal power between soil samples with 2000ppm Pb
and that with no Pb is only about 3dBm.

This experiment demonstrates that variations in salt concentra-
tion impact the power of the received RF signal, and it varies at
different frequencies.

6.3.2 RFID and WIFI range signals for soils spiked with NaCl . The
above experiment was repeated with soil samples spiked with only
NaCl salt, and the results are shown in Figs. 6 and 7. Overall, in the
700 to 1000MHz range, the observations are similar to Pb(NO3)2
spiked soils. For example, soil moisture shifted the peak towards

800MHz (Fig. 6a). The power of the RF signal increases with the
NaCl content in soil at around 800MHz but decreases when above
825MHz (Fig. 6a and Fig. 7).

Within the WiFi frequency range (Figs. 6b and 6c), received
power decreases with increasing content of NaCl, which is con-
sistent with findings from the prior experiment with Pb(NO3)2.
However, the magnitude of the decrease is higher for NaCl than
Pb(NO3)2; this can be observed from the greater slope of the lines
c in Fig. 7.

6.3.3 RFID and WiFi signals affected by a combination of Pb(NO3)2
and NaCl. The experiments with individual Pb(NO3)2 and NaCl
showed that RF signals at different frequencies have different sen-
sitivities to the two studied salts.

However, most soils from the field usually contain many different
types of salt. So, an additional experiment was performed with
soil samples spiked with varying concentrations of both NaCl and
Pb(NO3)2 (Table 2, Samples 21-29).

Fig. 8 shows the power for the RF signal for all frequencies. RFID
frequencies are plotted in two bands: 760-780MHz and 860-920MHz.
The power increases with salt concentration in the 700-800MHz
band, while the opposite trend can be observed in the 800-900MHz
range. In the 2.4GHz spectrum, the signals are grouped into three
clear ranges where the power is more attenuated when the NaCl
content is at 2000 ppm. This is similar to the observation in the
previous experiment (see Section 6.3.2) where NaCl affects the RF
signal more than Pb(NO3)2 at 2.4GHz. This experiment shows that
the effect of individual salts on reflected power signals is maintained
with similar trends even when other salt(s) are present in the soil.
While the effect by Pb(NO3)2 wasmaintained at the lower frequency
band (700-900MHz), the effect by NaCl wasmaintained at the higher
frequency band (2.4GHz).

6.3.4 Potential on commodity RFID. The above experiments were
performed on expensive software-defined radios. The same exper-
iment with a commercial RFID setup was repeated to prove the
feasibility of using commercial off-the-shelf devices.

In this setup, a commercial Impinj R420 RFID tag Reader (Rev 3),
which operates at 918-926MHz, was used. No additional hardware-
levelmodification for the RFID readerwas needed. The Laird S9025PL
antenna was connected to the RFID reader using a Vulcan RFID
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Figure 9: Experiment setup with commercial RFID.

Figure 10: x-axis is the content of NaCl or Pb(NO3)2 in ppm,
and y-axis is the power reading of RFID setup in dBm. The
red line represents Pb(NO3)2 samples with 20%moisture, and
the blue line represents NaCl samples with 20% moisture.

6 ft antenna cable and installed on the inner top of a plastic box
with a dimension of 15cm*15cm*20cm (same as the USRP setting).
The antenna has a 5.5dB gain and an elevation/azimuth beamwidth
of 100 degrees. One EPC C1 GEN2 73X17mm UHF tag is attached
to the inner bottom of the box, as shown in Fig. 9. The reader and
the tag are separated by 18cm. We used Octane SDK with Java and
ItemTest, an Impinj software, to control the reader activity. The
reader’s power was set at 30dB, and Rx sensitivity was set at -80dB.
Each data collection session was 10 seconds, with tag-read activity

occurring at least 100 times. One average power is calculated us-
ing all the power readings of the specific tag (attached to the box)
within the 10s period.

Fig. 10 shows the RF signal’s power for different soil samples
with commodity RFID setup. In a commercial RFID setup, only one
average power value was recorded for each soil sample. For both
NaCl and Pb(NO3)2, the power of the received signal is negatively
proportional to the amount of salt in the sample. Furthermore, the
slope representing how sensitive the RF power is changed due to
the presence of salt is clearly different for the two studied salts. It
is important to note that this observation is the same as that of the
expensive software-defined radio setup at the 900MHz range.

6.3.5 Regression on controlled soil samples. The regression model
shows the feasibility of separating Pb inside the soil. The 𝑅2 of each
pair of features and ingredient is shown in Table 3. Diff2300 can be
used to estimate the level of NaCl because the linear relationship
between NaCl and Diff2300 is robust with an 𝑅2 value of 0.954;
Diff800 can be used to estimate the level of Pb(NO3)2 because the
linear relationship between Pb(NO3)2 and Diff800 is robust with
an 𝑅2 value of 0.920.

Table 3: Regression performance 𝑅2 for Diff2300 and Diff800.

Ingredient Diff800 Diff2300

Pb(NO3)2 0.920 0.017
NaCl 0.776 0.954

6.4 Analysis on uncontrolled field samples
6.4.1 Composition of the field samples. The studied field soil sam-
ples cover a wide range of moisture, pH, organic matter, gravel
percentage, and heavy metals(including Pb). (Fig. 11). The aver-
age Pb content in those samples varied from 36ppm (minimum) to
1550ppm (maximum), with 12 samples below and 10 samples above
the 200ppm threshold, moisture from 1% to 40%, and organic from
4% to 26%. The pH varied from 4.70 to 7.07, and the total salt amount
from 58g to 710g. The composition of these samples is illustrated
in Fig. 11.

6.4.2 Model performance for the field samples. The classification
model’s performance is evaluated by analyzing the confusion ma-
trix. In this evaluation, we set model parameters 𝑟 = 200 and
𝑘 = 100.

Confusion Matrix:
Table 4 is the confusion matrix that visually summarizes the

performance of a classification model. It compares the actual labels

Table 4: Confusion matrix for classifying Pb with the thresh-
old of 200ppm.

Predicted Label

True Label Pb: <200 ppm Pb >= 200 ppm

Pb: <200 ppm 0.36 0.18
Pb: >= 200 ppm 0.091 0.36
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Figure 11: Composition of the field samples.

of the data (ground truth) with the labels predicted by the model.
Rows represent the actual labels(Pb content from pXRF measure-
ment) in the data. Columns represent the labels predicted by the
model. Parameters in the table include:

True Negative (TN) - upper left: 36% where the model cor-
rectly predicted a negative class.

True Positive (TP) - lower right: 36% where the model cor-
rectly predicted a positive class.

False Positive (FP) - upper right: 18% where the model incor-
rectly predicted a positive class.

False Negative (FN) - lower left: 9% where the model incor-
rectly predicted a negative class.

we analyze the confusion matrix by following metrics:
Accuracy: 72%, the overall proportion of correct predictions

(𝑇𝑃 +𝑇𝑁 )/(𝑇𝑜𝑡𝑎𝑙).
Recall: 80%, defined as (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ), the ratio of true pos-

itives (TP) to the sum of true positives and false negatives (TP
+ FN), is a crucial metric for evaluating classification models. In
the context of Pb detection, a high recall value is particularly sig-
nificant. It indicates that the model effectively identifies a high
proportion of samples with elevated Pb levels, reducing the likeli-
hood of overlooking critical cases. This characteristic strengthens
the system’s potential as a screening mechanism, prompting further
investigation for potential Pb contamination.

In addition, the false negative data points (which contain an
excess amount of Pb but are classified as less than 200ppm) do not
contain any of the four samples higher than 500ppm of Pb. We
show that in our 22 ∗ 𝑘 iterations (where 𝑘 is a parameter which
indicates the number of times the ensemble model has been trained
and tested), only the samples with 257ppm and 449ppm Pb were
classified as false negatives. The low false negative rate of the
model allows the system to be an excellent screening system for
Pb detection. If our system’s output is "above the threshold", the
soil sample can be sent to a lab for further investigation.

7 LIMITATIONS AND FUTUREWORK
SoilScanner demonstrates the feasibility of utilizing wireless-based
technologies for detecting Pb (and other salts or trace metals) in
soil. Given the widespread presence of Pb as a metal contaminant in
urban soils, the capability to detect it holds significant implications
for public health, urban agriculture, and sustainability. However,

more work will be needed to achieve the goal of creating an af-
fordable, accessible, portable, and non-invasive wireless sensor for
in-situ Pb detection in soil.

7.1 Consideration of data collection and
analysis approaches

The SoilScanner was constructed and tested using two sets of sam-
ples: 23 controlled, lab-prepared soil for regression, and 22 un-
controlled, natural field samples for classification. These two ap-
proaches represent distinct strategies for addressing the detection
problem.

Controlled Sample Testing: Bottom-Up Approach
In the regression model, the goal was to establish a mapping

comparison between the predicted values of the system and the
exact Pb concentration with known methods (in this case, pXRF).
This involved understanding the impact of various slats at differ-
ent frequencies and determining the influence of soil composition.
Calibration curves were developed for individual salts in this study
NaCl and Pb(NO3)2 in a controlled setting. However, field soils
have greater complexity and variability in properties. Additional
experiments are necessary to examine the effects of other soil com-
ponents.

Uncontrolled Sample Testing: Top-Down Approach
In contrast, for uncontrolled field samples, we used a binary clas-

sification approach based on a threshold rather than mapping exact
Pb amounts. Acknowledging the variability in field soil samples,
this approach considered the impact of Pb on signal propagation
alongside other factors. The model can be generalized and further
developed to support multi-class classification by incorporating
various samples with varying properties. This requires lab experi-
ments with soil samples collected from different locations to serve
as validation for the developed model.

Integration of Approaches: Future Directions
While the two approaches necessitate different types of data

collection and analysis, merging them offers a powerful strategy
for future research. Leveraging the robust relationships established
in controlled sample testing, this information can inform the binary
classification model, reducing the complexity and sample size re-
quired for building an accurate and robust model. This integration
of approaches represents a promising direction for advancing the
capabilities of SoilScanner. We acknowledge the limited sample
size in this study, and data augmentation, while helpful, is not a
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perfect substitute for real samples. Despite this, the experiment
yielded promising results, which we expect to improve with greater
accuracy and generalizability in future research.

7.2 Complex environmental variables
The experiments in this study were conducted in a controlled lab
setting. The application of the system to the real world requires
consideration of other challenges, such as the presence of plants
and other surface coverages, WiFi interference or objects that may
affect reflection, as well as weather conditions that may affect RF
propagation.

7.3 Portable chip manufacturing
This study has yielded promising results regarding the use of com-
mercial RFID devices. Similar to RFID setup, the use of existing
WiFi chipsets in smart devices that are smaller in size and work
on batteries will be explored. If feasible, this hardware can then be
put together to form a small sensor that is portable and can run on
battery power. Research [26] has shown that it is possible to build
a multiband RF system of size 15𝑚𝑚2 that can operate on three
frequency bands namely RFID (800MHz), WiFi (2.4 and 5GHz), and
run on button cell battery.

8 CONCLUSIONS
In this paper, we present SoilScanner, a multiband RF-based system
for screening Pb contamination in soil. SoilScanner utilized the
mathematically proved assumption that the signal power spectrum
carries the information of individual salts in the soil. We show the
feasibility of separating Pb in soil by building a regression model for
controlled lab-prepared soil samples and a classification model for
uncontrolled field soil samples based on the 200ppm threshold set by
the U.S. EPA. Our results show that both models are robust, and the
classification model has a zero error rate when Pb is > 500ppm. We
are confident that SoilScanner is a significant step toward building
a low-cost, easy-to-use, and high-accuracy Pb detection/screening
system.

9 APPENDIX
The implementation details of the model designed for uncontrolled
field samples are illustrated in Fig. 12.
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